1
|
Mahmoudi Asl A, Karami B, Farahi M, Karimi Z. Dual Brønsted acidic-basic function immobilized on the 3D mesoporous polycalix [4]resorcinarene: As a highly recyclable catalyst for the synthesis of spiro acenaphthylene/indene heterocycles. Heliyon 2024; 10:e29277. [PMID: 38660255 PMCID: PMC11040065 DOI: 10.1016/j.heliyon.2024.e29277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, a novel dual Brønsted acidic-basic nano-scale porous organic polymer catalyst, PC4RA@SiPr-Pip-BuSO3H, was synthesized through various steps: preparation of a 3D network of polycalix, modification with (3-chloropropyl)-trimethoxysilane, then functionalization of polymer with piperazine and n-butyl sulfonic acid under the provided conditions. The catalyst characterization was performed by FT-IR, TGA, EDS, elemental mapping, PXRD, TEM, and FE-SEM analyses, confirming high chemical stability, activity, recoverability, and excellent covalent anchoring of functional groups. So, the designed catalyst was utilized for preparing spiro-acenaphthylene and amino-spiroindene heterocycles, providing good performance with a high yield of the corresponding products. Accordingly, this catalyst can be used in different organic transformations. Necessary experiments were conducted for the recyclability test of the polymeric catalyst, and the results showed the PC4RA@SiPr-Pip-BuSO3H catalyst can be reused 10 times without any decrease in its activity or quality with excellent stability. The structure of resultant spiro heterocycles was confirmed using 1H NMR, 13C NMR, and FT-IR.
Collapse
Affiliation(s)
- Aref Mahmoudi Asl
- Department of Chemistry, Yasouj University, P. O. Box 353, Yasouj, 75918-74831, Iran
| | - Bahador Karami
- Department of Chemistry, Yasouj University, P. O. Box 353, Yasouj, 75918-74831, Iran
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University, P. O. Box 353, Yasouj, 75918-74831, Iran
| | - Zahra Karimi
- Department of Chemistry, Yasouj University, P. O. Box 353, Yasouj, 75918-74831, Iran
| |
Collapse
|
2
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Liu Y, Wang ZK, Liu CZ, Liu YY, Li Q, Wang H, Cui F, Zhang DW, Li ZT. Supramolecular Organic Frameworks as Adsorbents for Efficient Removal of Excess Bilirubin in Hemoperfusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47397-47408. [PMID: 36223402 DOI: 10.1021/acsami.2c11458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excess bilirubin accumulates in the bodies of patients suffering from acute liver failure (ALF) to cause much irreversible damage and bring about serious clinical symptoms such as kernicterus, hepatic coma, or even death. Hemoperfusion is a widely used method for removing bilirubin from the blood, but clinically used adsorbents have unsatisfactory adsorption capacity and kinetics. In this study, we prepared four supramolecular organic framework microcrystals SOF-1-4 via slow evaporation of their aqueous solutions under infrared light. SOF-1-4 possess good regularity and excellent stability. We demonstrate that all the four SOFs could serve as adsorbents for bilirubin with fast adsorption kinetics within 20 min and ultrahigh adsorption capacity of 609.1 mg g-1, driven by electrostatic interaction and hydrophobicity. The superior adsorption performance of the SOFs outperformed most of the reported bilirubin adsorbents. Remarkably, SOF-3 could remove about 90% of bilirubin in the presence of 40 g L-1 BSA with a minimal loss of albumin and was thus further processed to a bead-shaped composite with a diameter of 2 mm with poly(ether sulfone) (PES). This PES-loaded SOF could efficiently adsorb bilirubin to the normal level from human plasma with an adsorption equilibrium concentration of 7.8 mg L-1 in 6 h through a dynamic hemoperfusion process. This work provides a new vitality for the development of novel bilirubin adsorbents for hemoperfusion therapy.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Chuan-Zhi Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Yue-Yang Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Fengchao Cui
- Department of Chemistry, Northeast Normal University, Changchun130024, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| |
Collapse
|
4
|
Liu Y, Wang ZK, Gao ZZ, Zong Y, Sun JD, Zhou W, Wang H, Ma D, Li ZT, Zhang DW. Porous organic polymer overcomes the post-treatment phototoxicity of photodynamic agents and maintains their antitumor efficiency. Acta Biomater 2022; 150:254-264. [DOI: 10.1016/j.actbio.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/01/2022]
|
5
|
Zhang PQ, Li Q, Wang ZK, Tang QX, Liu PP, Li WH, Yang GY, Yang B, Ma D, Li ZT. [5]Rotaxane, linear polymer and supramolecular organic framework constructed by nor-seco-cucurbit[10]uril-based ternary complexation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Zong Y, Xu YY, Wu Y, Liu Y, Li Q, Lin F, Yu SB, Wang H, Zhou W, Sun XW, Zhang DW, Li ZT. Porous dynamic covalent polymers as promising reversal agents for heparin anticoagulants. J Mater Chem B 2022; 10:3268-3276. [PMID: 35357392 DOI: 10.1039/d2tb00174h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heparins are natural and partially degraded polyelectrolytes that consist of sulfated polysaccharide backbones. However, as clinically used anticoagulants, heparins are associated with clinical bleeding risks and thus require rapid neutralization. Protamine sulfate is the only clinically approved antidote for unfractionated heparin (UFH), which not only may cause severe adverse reactions in patients, but also is only partially effective against low molecular weight heparins (LMWHs). We here present the facile synthesis of four porous multicationic dynamic covalent polymers (DCPs) from the condensation of tritopic aldehyde and acylhydrazine precursors. We show that, as new water-soluble polymeric antidotes, the new DCPs can effectively include both UFH and LMWHs and thus reverse their anticoagulating activity, which is confirmed by the activated partial thromboplastin time and thromboelastographic assays as well as mouse tail transection assay (bleeding model). The neutralization activities of two of the DCPs were found to be overall superior to that of protamine and have wider concentration windows and good biocompatibility. This pore-inclusion neutralization strategy paves the way for the development of water-soluble polymers as universal heparin binding agents.
Collapse
Affiliation(s)
- Yang Zong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yan-Yan Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Xing-Wen Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Li Y, Yan C, Li Q, Cao L. Successive construction of cucurbit[8]uril-based covalent organic frameworks from a supramolecular organic framework through photochemical reactions in water. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Liu Y, Liu CZ, Wang ZK, Zhou W, Wang H, Zhang YC, Zhang DW, Ma D, Li ZT. Supramolecular organic frameworks improve the safety of clinically used porphyrin photodynamic agents and maintain their antitumor efficacy. Biomaterials 2022; 284:121467. [DOI: 10.1016/j.biomaterials.2022.121467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
|
9
|
Sun JD, Li Q, Haoyang WW, Zhang DW, Wang H, Zhou W, Ma D, Hou JL, Li ZT. Adsorption-Based Detoxification of Endotoxins by Porous Flexible Organic Frameworks. Mol Pharm 2022; 19:953-962. [PMID: 35102736 DOI: 10.1021/acs.molpharmaceut.1c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial lipopolysaccharides (LPS, endotoxins) cause sepsis that is responsible for a huge amount of mortality globally. However, their neutralization or detoxification remains an unmet medical need. We envisaged that cationic organic frameworks with persistent hydrophobic porosity may adsorb and thus neutralize LPS through a combination of cooperative ion-pairing electrostatic attraction and hydrophobicity. We here report the preparation of two water-soluble flexible organic frameworks (FOF-1 and FOF-2) from tetratopic and ditopic precursors through quantitative formation of hydrazone bonds at room temperature. The two FOFs are revealed to possess hydrodynamic diameters, which range from 20 to 120 nm, depending on the concentrations. Dynamic light scattering and isothermal titration calorimetric and chromogenic limulus amebocyte lysate experiments indicate that both frameworks are able to adsorb and thus reduce the concentration of free LPS molecules in aqueous solution, whereas cytokine inhibition experiments with RAW264.7 support that this adsorption can significantly decrease the toxicity of LPS. In vivo experiments with mice (five males per group) show that the injection of FOF-1 at a dose of 0.6 mg/kg realizes the survival of all of the mice administrated with LPS of the d-galactosamine (d-Gal)-sensitized absolute lethal dose (LD100, 0.05 mg/kg), whereas its maximum tolerated dose for mice is determined to be 10 mg/kg. These findings provide a new promising sequestration strategy for the development of porous agents for the neutralization of LPS.
Collapse
Affiliation(s)
- Jian-Da Sun
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Qian Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Wei-Wei Haoyang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Da Ma
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China.,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
10
|
Liu YY, Wang ZK, Yu SB, Liu Y, Wang H, Zhou W, Li ZT, Zhang DW. Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. J Mater Chem B 2022; 10:4163-4171. [DOI: 10.1039/d2tb00678b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase I-III clinical studies show that aldoxorubicin (AlDox), a prodrug of doxorubicin (Dox), displays superior cardiotocity over Dox, but does not demonstrate a survival benefit in the entire patients. Here...
Collapse
|
11
|
Liu X, Xiao Y, Zhang Z, You Z, Li J, Ma D, Li B. Recent Progress in
Metal‐Organic
Frameworks@Cellulose Hybrids and Their Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yun Xiao
- General English Department, College of Foreign Languages Nankai University Tianjin 300071 China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Laboratory of Eco‐chemical Engineering, Ministry of Education Qingdao University of Science and Technology Qingdao 266042 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| |
Collapse
|
12
|
Yang B, Zhang JW, Yu SB, Wang ZK, Zhang PQ, Yang XD, Qi QY, Yang GY, Ma D, Li ZT. A self-assembled framework that interpenetrates in crystal but does not interpenetrate in solution. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1012-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Xu ZY, Liu HK, Wu Y, Zhang YC, Zhou W, Wang H, Zhang DW, Ma D, Li ZT. Flexible Organic Framework-Based Anthracycline Prodrugs for Enhanced Tumor Growth Inhibition. ACS APPLIED BIO MATERIALS 2021; 4:4591-4597. [DOI: 10.1021/acsabm.1c00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zi-Yue Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yun-Chang Zhang
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Da Ma
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Xu YY, Liu HK, Wang ZK, Song B, Zhang DW, Wang H, Li Z, Li X, Li ZT. Olive-Shaped Organic Cages: Synthesis and Remarkable Promotion of Hydrazone Condensation through Encapsulation in Water. J Org Chem 2021; 86:3943-3951. [PMID: 33599126 DOI: 10.1021/acs.joc.0c02792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two organic cages have been prepared in situ in water through the 2 + 3 hydrazone coupling of two pyridinium-derived trialdehydes and oxalohydrazide. The highly water-soluble cages encapsulate and solubilize linear neutral molecules. Such encapsulation has been applied for the promotion of both two- or three-component hydrazone condensation in water. For two-component reactions, the yields of the resulting monohydrazones are increased from 5-10 to 90-96%. For three-component reactions of hydrazinecarbohydrazide with 11 aromatic aldehydes, in the presence of the organic cages, the bihydrazone products can be produced in 88-96% yields. In contrast, without the promotion of the organic cages, 9 of the reactions do not afford the corresponding dihydrazone product.
Collapse
Affiliation(s)
- Yan-Yan Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhiming Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518055, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
15
|
Xu Y, Liu C, Wang H, Zhang D, Li Z. Intermolecular Halogen Bonding-Controlled Self-Assembly of Hydrogen Bonded Aromatic Amide Foldamers. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|