1
|
Yan C, Qian Y, Liao Z, Le Z, Fan Q, Zhu H, Xie Z. Recent progress of metal halide perovskite materials in heterogeneous photocatalytic organic reactions. Photochem Photobiol Sci 2024; 23:1393-1415. [PMID: 38850494 DOI: 10.1007/s43630-024-00599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Photocatalytic technology is widely regarded as an important way to utilize solar energy and achieve carbon neutrality, which has attracted considerable attentions in various fields over the past decades. Metal halide perovskites (MHPs) are recognized as "superstar" materials due to their exceptional photoelectric properties, readily accessible and tunable structure, which made them intensively studied in solar cells, light-emitting diodes, and solar energy conversion fields. Since 2018, increased attention has been focused on applying the MHPs as a heterogeneous visible light photocatalyst in catalyzing organic synthesis reactions. In this review, we present an overview of photocatalytic technology and principles of heterogeneous photocatalysis before delving into the structural characteristics, stability, and classifications of MHPs. We then focus on recent developments of MHPs in photocatalyzing various organic synthesis reactions, such as oxidation, cyclization, C-C coupling etc., based on their classifications and reported reaction types. Finally, we discuss the main limitations and prospects regarding the application of metal halide perovskites in organic synthesis.
Collapse
Affiliation(s)
- Chunpei Yan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Yan Qian
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhaohong Liao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
2
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
3
|
Meng S, Li L, Xi H, Yang J, Xiao T, Zuo R, Xu X, Lei Z, Yang Z, Xue Q. Visible‐light Photocatalytic and Photo‐bactericidal Activity of
Ni‐CuWO
4
/
OTiO
2
Composite. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuangyan Meng
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Li Li
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Hui Xi
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Jing Yang
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Ting Xiao
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Rui Zuo
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Xueqing Xu
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Ziqiang Lei
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Zhiwang Yang
- Key Laboratory of Eco‐functional Polymer Materials, Ministry of Education, Key Laboratory of Eco‐Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070
| | - Qunji Xue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
4
|
Yang Z, Peng S, Lin F, Wang P, Xing G, Yu L. Self‐assembly behavior of metal halide perovskite nanocrystals. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhuoying Yang
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Shaomin Peng
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Fan Lin
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Pengfei Wang
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering University of Macau Macao, SAR, 999078 China
| | - Lin Yu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
5
|
Guo Y, Lou Y, Chen J, Zhao Y. Lead-Free Cs 2 AgSbCl 6 Double Perovskite Nanocrystals for Effective Visible-Light Photocatalytic C-C Coupling Reactions. CHEMSUSCHEM 2022; 15:e202102334. [PMID: 34898013 DOI: 10.1002/cssc.202102334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Lead halide perovskite nanocrystals (NCs) have been regarded as a promising potential photocatalyst, owing to their high molar extinction coefficient, low economic cost, adjustable light absorption range, and ample surface active sites. However, the toxicity of lead and its inherent instability in water and polar solvents could hinder their wide application in the field of photocatalysis. Herein, with α-alkylation of aldehydes as a model reaction, C-C bond-forming is demonstrated in high yield by using lead-free double perovskite Cs2 AgSbCl6 NCs under visible light irradiation. Moreover, the photocatalytic performance is simply improved by rational control of the surface ligands and a reaction mechanism involving a radical intermediate is proposed. Although the stability requires further amelioration, the results indicate the enormous potential of lead-free double perovskite NC photocatalysts for organic synthesis and chemical transformations.
Collapse
Affiliation(s)
- Yanmei Guo
- School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
6
|
Green and efficient photodegradation of norfloxacin with CsPbBr3-rGO/Bi2WO6 S-scheme heterojunction photocatalyst. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
An H, Xiao S, Zhao X, Cao L, Liu T, Li M, Wang B, Yin Z. Construction of Highly Efficient Photocatalyst with
Core‐Shell
Au@Ag/C@
SiO
2
Hybrid Structure towards
Visible‐Light‐Driven
Photocatalytic Reduction. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huiqin An
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Shunyuan Xiao
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Xiaohui Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Lifang Cao
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Ting Liu
- Second Oil Production Plant in Changqing Oilfield Qingyang Gansu 745106 China
| | - Mengzhu Li
- Beijing Institute of Aerospace Testing Technology Beijing 100048 China
| | - Bing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Zhen Yin
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
8
|
Abstract
This review summarizes the current status of the application of metal halide perovskites (MHPs) as photocatalysts in organic syntheses/transformations. It is shown that the optimal and unique electronic properties of MHPs can be advantageously used in several reaction types providing pros with respect to traditional photocatalysts. While still being at infancy, such field of application of MHPs as effective photocatalysts will for sure become a central research topic in the forthcoming years, thanks also to their rich structural and chemical tunability, which may provide tailored materials for most of the envisaged organic reactions.
Collapse
|
9
|
Zhao Y, Wang L, Song T, Mudryi A, Li Y, Chen Q. Recent Progress in Designing Halide-Perovskite-Based System for the Photocatalytic Applications. Front Chem 2021; 8:613174. [PMID: 33520937 PMCID: PMC7838566 DOI: 10.3389/fchem.2020.613174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
The halide perovskite material has attracted vast attention as a versatile semiconductor in the past decade. With the unique advantages in physical and chemical properties, they have also shown great potential in photocatalytic applications. This review aims at the specific design principles triggered by the unique properties when employing halide-perovskite-based photocatalytic systems from the following perspectives: (I) Design of photoelectrocatalytic device structures including the n-i-p/p-i-n structure, photoelectrode device encapsulation, and electrolyte engineering. (II) The design of heterogeneous photocatalytic systems toward the hydrogen evolution reaction (HER) and CO2 reduction reaction, including the light management, surface/interface engineering, stability improvement, product selectivity engineering, and reaction system engineering. (III) The photocatalysts for the environmental application and organic synthesis. Based on the analyses, the review also suggests the prospective research for the future development of halide-perovskite-based photocatalytic systems.
Collapse
Affiliation(s)
- Yizhou Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Lanning Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Tinglu Song
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Alexander Mudryi
- Scientific-Practical Material Research Centre of the National Academy of Science of Belarus, Minsk, Belarus
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|