1
|
Wei J, Rodríguez-Kessler PL, Saillard JY, Muñoz-Castro A. Cuboctahedral Pd 13 as a spherical aromatic noble metal core: insights from a ligand-protected [Pd 13(Tr) 6] 2+ cluster. Dalton Trans 2024; 53:16740-16746. [PMID: 39347686 DOI: 10.1039/d4dt01633e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Low-valent palladium nanoparticles are efficient species promoting catalytic activity and selectivity in a number of chemical reactions. Recently, an atom-centered cuboctahedral Pd13 motif has been characterized as a ligand-protected [Pd13(Tr)6]2+ cluster featuring a 1s2 superatomic shell structure. In this report, we describe the ligand-cluster of and endohedral-cage interaction in [Pd13(Tr)6]2+, which accounts for a favorable situation in the overall cluster. In addition, the spherical aromatic properties of the cluster were evaluated to understand the behavior of the ligand-protected Pd13 cluster core. Our results indicate a sizable interaction towards carbon-based ligands in an overall spherical aromatic cluster featuring a long-range shielding cone. Thus, [Pd13(Tr)6]2+ is rationalized as the first ligand-protected palladium cluster to date exhibiting spherical aromatic properties, serving as a stable building block for molecule-based materials or as a dopant in porous carbon materials.
Collapse
Affiliation(s)
- Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, Mexico
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
2
|
Breitwieser K, Bevilacqua M, Mullassery S, Dankert F, Morgenstern B, Grandthyll S, Müller F, Biffis A, Hering‐Junghans C, Munz D. Pd 8(PDip) 6: Cubic, Unsaturated, Zerovalent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400699. [PMID: 38634573 PMCID: PMC11220702 DOI: 10.1002/advs.202400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Atomically precise nanoclusters hold promise for supramolecular assembly and (opto)electronic- as well as magnetic materials. Herein, this work reports that treating palladium(0) precursors with a triphosphirane affords strongly colored Pd8(PDip)6 that is fully characterized by mass spectrometry, heteronuclear and Cross-Polarization Magic-Angle Spinning (CP-MAS) NMR-, infrared (IR), UV-vis, and X-ray photoelectron (XP) spectroscopies, single-crystal X-Ray diffraction (sc-XRD), mass spectrometry, and cyclovoltammetry (CV). This coordinatively unsaturated 104-electron Pd(0) cluster features a cubic Pd8-core, µ4-capping phosphinidene ligands, and is air-stable. Quantum chemical calculations provide insight to the cluster's electronic structure and suggest 5s/4d orbital mixing as well as minor Pd─P covalency. Trapping experiments reveal that cluster growth proceeds via insertion of Pd(0) into the triphosphirane. The unsaturated cluster senses ethylene and binds isocyanides, which triggers the rearrangement to a tetrahedral structure with a reduced frontier orbital energy gap. These experiments demonstrate facile cluster manipulation and highlight non-destructive cluster rearrangement as is required for supramolecular assembly.
Collapse
Affiliation(s)
- Kevin Breitwieser
- Coordination Chemistry Saarland UniversityCampus C4.1D‐66123SaarbrückenGermany
| | - Matteo Bevilacqua
- Coordination Chemistry Saarland UniversityCampus C4.1D‐66123SaarbrückenGermany
- Dipartimento di Scienze ChimicheUniversità degli Studi di Padovavia Marzolo 1PadovaI‐35131Italy
| | - Sneha Mullassery
- Coordination Chemistry Saarland UniversityCampus C4.1D‐66123SaarbrückenGermany
| | - Fabian Dankert
- Coordination Chemistry Saarland UniversityCampus C4.1D‐66123SaarbrückenGermany
| | - Bernd Morgenstern
- Coordination Chemistry Saarland UniversityCampus C4.1D‐66123SaarbrückenGermany
| | - Samuel Grandthyll
- Experimental Physics and Center for BiophysicsSaarland UniversityCampus E2.9D‐66123SaarbrückenGermany
| | - Frank Müller
- Experimental Physics and Center for BiophysicsSaarland UniversityCampus E2.9D‐66123SaarbrückenGermany
| | - Andrea Biffis
- Dipartimento di Scienze ChimicheUniversità degli Studi di Padovavia Marzolo 1PadovaI‐35131Italy
| | - Christian Hering‐Junghans
- Katalyse mit phosphorhaltigen MaterialienLeibniz Institut für Katalyse e.VAlbert‐Einstein‐Straße 29aD‐18059RostockGermany
| | - Dominik Munz
- Coordination Chemistry Saarland UniversityCampus C4.1D‐66123SaarbrückenGermany
| |
Collapse
|
3
|
Guo Q, Su Z, Xiang D, Yu B, Wang D, Fan Y, Zheng F, Chen W. Fabrication of six-atom Pd clusters regulated with different short ligands and their surface structure-dependent catalytic activities. J Colloid Interface Sci 2024; 662:242-249. [PMID: 38350347 DOI: 10.1016/j.jcis.2024.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
As model catalysts, it is necessary to study the relationship between the structure and properties of ultra-small metal nanoclusters (MNCs) and to reduce their steric hindrance as much as possible, e.g. preparing ultrasmall MNCs protected by ultra-short ligands. However, it is challenging to attain various MNCs with the same cores but different surface stabilizing ligands. Additionally, shortening the chains of protecting ligands will lead to larger MNC cores. Here, four different Pd NCs (Pd6(SC4H9)12, Pd6(SC8H17)12, Pd6(SC6(C2)H17)12 and Pd6(SC6H13)12) were successfully synthesized by a slow synthesis process. All these clusters consist of six Pd atoms and are stabilized by 12 thiols with different chain lengths and steric hindrance. The catalytic properties of the as-prepared Pd6 NCs were evaluated using the catalytic reduction of p-nitroaniline to p-phenylenediamine as a model reaction. The outcomes indicated that shortening the chain length of the protecting thiols could enhance the catalytic activity of the Pd6 NCs. Notably, stable and active ultra-small Pd6 clusters stabilized by ultra-short ligands (HSC4H9) were successfully synthesized. Although the performance of Pd6(SC4H9)12 clusters protected by the ultra-short thiols is lower than that of commercial palladium on carbon (Pd/C), they display higher stability. Interestingly, the activity of Pd6 NCs protected by ethyl-branched alkane thiols is also better than that of Pd6 NCs protected by the alkane thiol ligands with the same chain length or the same number of carbon numbers. This work provides clear evidence that the catalytic activity of atomically precise MNCs can be controlled by regulating the surface stabilizing ligands.
Collapse
Affiliation(s)
- Qian Guo
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ziyun Su
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dong Xiang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou 510006, China
| | - Beirong Yu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Di Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youjun Fan
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fuqin Zheng
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Wei Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
4
|
Yao J, Shao L, Kang X, Zhu M, Huo X, Wang X. Direct α-Arylation of Benzo[ b]furans Catalyzed by a Pd 3 Cluster. J Org Chem 2024; 89:1719-1726. [PMID: 38204281 DOI: 10.1021/acs.joc.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
As an interim paradigm for the catalysts between those based on more conventional mononuclear molecular Pd complexes and Pdn nanoparticles widely used in organic synthesis, polynuclear palladium clusters have attracted great attention for their unique reactivity and electronic properties. However, the development of Pd cluster catalysts for organic transformations and mechanistic investigations is still largely unexploited. Herein, we disclose the use of trinuclear palladium (Pd3Cl) species as an active catalyst for the direct C-H α-arylation of benzo[b]furans with aryl iodides to afford 2-arylbenzofurans in good yields under mild conditions. With this method, broad substrate adaptability was observed, and several drug intermediates were synthesized in high yields. Mechanistic studies indicated that the Pd3 core most likely remained intact throughout the reaction course.
Collapse
Affiliation(s)
- Jian Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lili Shao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
5
|
Li Y, Zhao S, Zang S. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. EXPLORATION (BEIJING, CHINA) 2023; 3:20220005. [PMID: 37933377 PMCID: PMC10624382 DOI: 10.1002/exp.20220005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 11/08/2023]
Abstract
The unclear structures and polydispersity of metal nanoparticles (NPs) seriously hamper the identification of the active sites and the construction of structure-reactivity relationships. Fortunately, ligand-protected metal nanoclusters (NCs) with atomically precise structures and monodispersity have become an ideal candidate for understanding the well-defined correlations between structure and catalytic property at an atomic level. The programmable kernel structures of atomically precise metal NCs provide a fantastic chance to modulate their size, shape, atomic arrangement, and electron state by the precise modulating of the number, type, and location of metal atoms. Thus, the special focus of this review highlights the most recent process in tailoring the catalytic activity and selectivity over metal NCs by precisely controlling their kernel structures. This review is expected to shed light on the in-depth understanding of metal NCs' kernel structures and reactivity relationships.
Collapse
Affiliation(s)
- Ya‐Hui Li
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shu‐Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
6
|
Yao J, Bai J, Kang X, Zhu M, Guo Y, Wang X. Non-directed C-H arylation of electron-deficient arenes by synergistic silver and Pd 3 cluster catalysis. NANOSCALE 2023; 15:3560-3565. [PMID: 36723135 DOI: 10.1039/d2nr05825a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal clusters have attracted great attention in catalysis due to their unique reactivity and electronic properties, especially for novel substrate binding and activation modes at the bridging coordination sites of metal clusters. Although palladium complexes have demonstrated outstanding catalytic performance in various transformations, the catalytic behaviors of polynuclear palladium clusters in many important synthetic methodologies remain much less explored so far. Herein, we disclose the use of an atomically defined tri-nuclear palladium (Pd3Cl) species as a catalyst precursor in Ag(I)-assisted direct C-H arylation with aryl iodides under mild conditions. This catalyst system leads to the formation of synthetically important biaryls in good yields with high site selectivities without the assistance of directing groups.
Collapse
Affiliation(s)
- Jian Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
7
|
Liang H, Rio J, Perrin L, Payard PA. Salt-Enhanced Oxidative Addition of Iodobenzene to Pd: An Interplay Between Cation, Anion, and Pd-Pd Cooperative Effects. Inorg Chem 2022; 61:7935-7944. [PMID: 35522732 DOI: 10.1021/acs.inorgchem.2c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halide salts facilitate the oxidative addition of organic halides to Pd(0). This phenomenon originates from a combination of anionic, cationic, and Pd-Pd cooperative effects. Exhaustive computational exploration at the density functional theory level of the complexes obtained from [Pd0(PPh3)2] and a salt (NMe4Cl or LiCl) showed that chlorides promote phosphine release, leading to a mixture of mononuclear and dinuclear Pd(0) complexes. Anionic Pd(0) dinuclear complexes exhibit a cooperativity between Pd(0) centers, which favors the oxidative addition of iodobenzene. The higher activity of Pd(0) dimers toward oxidative addition rationalizes the previously reported kinetic laws. In the presence of Li+, the oxidative addition to mononuclear [Pd0L(Li2Cl2)] is estimated barrierless. LiCl coordination polarizes Pd(0), enlarging both the electrophilicity and the nucleophilicity of the complex, which promotes both coordination of the substrate and the subsequent insertion into the C-I bond. These conclusions are paving the way to the rational use of the salt effects in catalysis for the activation of more challenging bonds.
Collapse
Affiliation(s)
- Haosheng Liang
- Univ de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne cedex, France
| | - Jordan Rio
- Univ de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne cedex, France
| | - Lionel Perrin
- Univ de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne cedex, France
| | - Pierre-Adrien Payard
- Univ de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne cedex, France
| |
Collapse
|