1
|
Xu K, Li HP, Ji YL, Peng C, Zhan G, Yang QQ, Han B. Sc-Catalyzed Asymmetric [2 + 2] Annulation of 2-Alkynylnaphthols with Dienes to Access Cyclobutene Frameworks. Org Lett 2025. [PMID: 39815892 DOI: 10.1021/acs.orglett.4c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Herein, we introduce a scandium-catalyzed synthetic strategy that provides access to a diverse and functionalized array of cyclobutene frameworks adorned with a quaternary carbon center. This approach broadens the synthetic repertoire of 2-alkynylnaphthols with alkenes, offering a versatile platform for the construction of complex molecular architectures. The asymmetric catalytic [2 + 2] cycloaddition reaction demonstrates a wide substrate scope and an impressive functional group tolerance, yielding products with high efficiency, up to 97% yield, and excellent enantiomeric excess of up to 97%. The simplicity of scaling up this process, coupled with the ease of converting these cyclobutene frameworks into a variety of substituted products, significantly enhances the synthetic utility of this method.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yan-Ling Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
2
|
Cao X, Tian X, Liu M, Li SW. Asymmetric Synthesis of Optically Active Pyrazolidines or Pyrazoline Derivatives via Ni(II)-Bipyridine- N, N'-dioxide Complexes. Org Lett 2025; 27:19-24. [PMID: 39720879 DOI: 10.1021/acs.orglett.4c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Easily obtainable and efficient chiral C2-symmetric bipyridine-N,N'-dioxide ligands with Ni(OTf)2 were developed for application in catalyzing [3 + 2] cycloaddition reactions to synthesize optically active fused pyrazolidines or pyrazoline derivatives featuring three contiguous stereogenic centers by employing azomethine imines and α,β-unsaturated 2-acyl imidazoles, affording the corresponding adducts with the opposite configuration compared to previous synthetic products in 80-98% yields with 28-99% ee and >20:1 dr. In addition, subsequent amplification experiments and derivative transformations of the product further demonstrated the efficient catalytic performance of the catalyst Ni(II)-bipyridine-N,N'-dioxide complexes and the practicality of this synthesis methodology.
Collapse
Affiliation(s)
- Xiaoying Cao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xue Tian
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Minmin Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shi-Wu Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
3
|
Xu Q, Ning L, Xu W, Lin L, Feng X. Synthesis of γ-Butyrolactones with Chiral Quaternary-Tertiary Stereocenters via Catalytic Asymmetric Mukaiyama-Michael Addition. Org Lett 2024; 26:9665-9670. [PMID: 39495085 DOI: 10.1021/acs.orglett.4c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
A catalytic asymmetric Mukaiyama-Michael reaction of silyl ketene acetals (SKAs) with α- or β-substituted α,β-unsaturated pyrazolamides was realized with N,N'-dioxide/nickel(II) complex catalysts. Bidentate coordination of the substrate to the catalyst and elongation of the ligand were beneficial for stereocontrol. In addition, adjustment of the substituents on substrates tuned the reactivity significantly. A wide range of chiral γ-butyrolactones with quaternary-tertiary stereocenters were obtained in moderate to excellent yields, good diastereomeric ratio, and excellent enantiomeric excess values.
Collapse
Affiliation(s)
- Qifan Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Wentao Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| |
Collapse
|
4
|
Yang Z, Jiang Z, Tan Z, Yu H, Feng X, Liu X. Asymmetric catalytic concise synthesis of 3-(3-indolomethyl)-oxindoles for the construction of trigolute analogs. Chem Commun (Camb) 2024; 60:10926-10929. [PMID: 39258335 DOI: 10.1039/d4cc03327b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Asymmetric synthesis of 3-(3-indolomethyl)oxindoles through the addition of indole-substituted enolized ketoesters to 3-bromo-3-substituted oxindoles has been achieved using a N,N'-dioxide/Ho(III) complex. A number of 3-(3-indolomethyl)oxindoles, which may possess biological activity, were obtained in good yields with high diastereo- and enantioselectivities (up to 97% yield, >19 : 1 dr, 98% ee). Furthermore, time-dependent reversal of diastereoselectivity enabled access to optically active diastereomers. The product followed by facile transformations gave a new route into trigolute analogs.
Collapse
Affiliation(s)
- Zun Yang
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zheng Jiang
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zheng Tan
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Han Yu
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Wu Z, Yang X, Zhang F, Liu Y, Feng X. Tandem catalytic allylic C-H amination and asymmetric [2,3]-rearrangement via bimetallic relay catalysis. Chem Sci 2024; 15:13299-13305. [PMID: 39183897 PMCID: PMC11339977 DOI: 10.1039/d4sc03315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
A bimetallic relay catalysis protocol for tandem allylic C-H amination and asymmetric [2,3]-sigmatropic rearrangement has been developed with the use of an achiral Pd0 catalyst and a chiral N,N'-dioxide-MgII complex in a one-pot operation. A series of anti-α-amino derivatives containing two stereogenic centers were prepared from readily available allylbenzenes and glycine pyrazolamide with good yields and high stereoselectivities. Moreover, the synthetic potential of this protocol was further demonstrated by the product transformations, and a catalytic cycle was proposed to illustrate the reaction process.
Collapse
Affiliation(s)
- Zhenwei Wu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xi Yang
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
| | - Yangbin Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
6
|
Hou L, Yang L, Yang G, Luo Z, Xiao W, Yang L, Wang F, Gong LZ, Liu X, Cao W, Feng X. Catalytic Asymmetric Dearomative [2 + 2] Photocycloaddition/Ring-Expansion Sequence of Indoles with Diversified Alkenes. J Am Chem Soc 2024; 146:23457-23466. [PMID: 38993029 DOI: 10.1021/jacs.4c06780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Developing novel strategies for catalytic asymmetric dearomatization (CADA) reactions is highly valuable. Visible light-mediated photocatalysis is demonstrated to be a powerful tool to activate aromatic compounds for further synthetic transformations. Herein, a catalytic asymmetric dearomative [2 + 2] photocycloaddition/ring-expansion sequence of indoles with simple alkenes was reported, providing a facile access to enantioenriched cyclopenta[b]indoles with good to high yields and enantioselectivities by means of chiral lanthanide photocatalysis. This protocol exhibited a broad substrate scope and good functional group tolerance, as well as potential applications in the synthesis of bioactive molecules. Mechanistic studies, including control experiments, UV-vis absorption spectroscopy, emission spectroscopy, and DFT calculations, were carried out, shedding insights into the reaction mechanism and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gaofei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhe Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Linhan Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610061, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610061, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Tan Z, Yihuo A, Wu Z, Wang F, Dong S, Feng X. Concise synthesis of chiral γ-butenolides via an allylation/lactonization cascade reaction. Chem Commun (Camb) 2024; 60:7926-7929. [PMID: 38982972 DOI: 10.1039/d4cc02781g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A highly enantioselective allylation/lactonization cascade was developed, which provides a concise and efficient route to chiral γ-butenolides under mild conditions. Most of the reaction examples can be completed in 10 minutes with high selectivity.
Collapse
Affiliation(s)
- Zheng Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Aying Yihuo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zhao Wu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Zhong Z, Wu H, Chen X, Luo Y, Yang L, Feng X, Liu X. Visible-Light-Promoted Enantioselective Acylation and Alkylation of Aldimines Enabled by 9-Fluorenone Electron-Shuttle Catalysis. J Am Chem Soc 2024; 146:20401-20413. [PMID: 38981037 DOI: 10.1021/jacs.4c06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Chiral acyclic α-tertiary amino ketones are widely present in various natural products and pharmaceuticals; however, the direct synthesis of this pharmacophore through a robust strategy still presents significant challenges. The emerging photocatalysis provides a powerful approach to construct chemical bonds that are difficult to form via a traditional two-electron pathway. Herein, we developed visible-light-induced chiral Lewis acid-catalyzed highly enantioselective acylation/alkylation of aldimines enabled by cooperative FLN (9-fluorenone) electron-shuttle catalysis via radical addition. An array of α-tertiary amino ketones, β-amino alcohols, and chiral amines were achieved with high yields and good to excellent stereocontrol (87 examples, up to 84% yield, 96% ee). These products can be easily transformed into valuable and bioactive skeletons. Extensive control experiments, detailed mechanism studies, and density functional theory calculations elucidated the reaction process and highlighted the crucial role played by FLN.
Collapse
Affiliation(s)
- Ziwei Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongda Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaofan Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Li Y, Ning L, Tang Q, Lan K, Yang B, Lin Q, Feng X, Liu X. Asymmetric catalytic [1,3]- or [3,3]-sigmatropic rearrangement of 3-allyloxy-4 H-chromenones and their analogues. Chem Sci 2024; 15:11005-11012. [PMID: 39027306 PMCID: PMC11253133 DOI: 10.1039/d4sc02201g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
A highly efficient asymmetric [1,3]- and [3,3]-O-to-C sigmatropic rearrangement of 3-allyloxy-4H-chromenones and their analogues was developed. Chiral N,N'-dioxide complexes of 3d late transition metal complexes enabled two mechanistically different processes, giving a series of optically active 2,2-disubstituted chromane-3,4-diones and 2-allyl-3-hydroxy-4H-chromen-4-ones as well as their related compounds in excellent yield and enantioselectivity. Systemic mechanistic studies and DFT calculation revealed the nature of the vinyl ether unit of the substrate, which biased regioselectivity via a stepwise tight ion pair pathway and a concerted pericyclic pathway, respectively. The enantioselectivity of the two processes is also disclosed.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Qi Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Kexin Lan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Bingqian Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Qianchi Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
10
|
Zeng H, Wen G, Lin L, Feng X. Asymmetric dearomatization of benzyl 1-naphthyl ethers via [1,3] O-to-C rearrangement. Chem Commun (Camb) 2024; 60:7507-7510. [PMID: 38949684 DOI: 10.1039/d4cc02620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A catalytic asymmetric dearomatization reaction of benzyl 1-naphthyl ethers accelerated by a chiral N,N'-dioxide/Co(II) complex is disclosed. The reaction proceeds via an enantioselective [1,3] O-to-C rearrangement through a tight ion-pair pathway, providing a wide array of α-naphthalenone derivatives bearing an all-carbon quaternary center in high yields with excellent ee values.
Collapse
Affiliation(s)
- Hongkun Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Gang Wen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Liu Z, Wu H, Zhang H, Wang F, Liu X, Dong S, Hong X, Feng X. Iron-Catalyzed Asymmetric Imidation of Sulfides via Sterically Biased Nitrene Transfer. J Am Chem Soc 2024; 146:18050-18060. [PMID: 38878303 DOI: 10.1021/jacs.4c04855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Transition-metal-catalyzed enantioselective nitrene transfer to sulfides has emerged as one of the most powerful strategies for rapid construction of enantioenriched sulfimides. However, achieving stereocontrol over highly active earth-abundant transition-metal nitrenoid intermediates remains a formidable challenge compared with precious metals. Herein, we disclose a chiral iron(II)/N,N'-dioxide-catalyzed enantioselective imidation of dialkyl and alkyl aryl sulfides using iminoiodinanes as nitrene precursors. A series of chiral sulfimides were obtained in moderate-to-good yields with high enantioselectivities (56 examples, up to 99% yield, 98:2 e.r.). The utility of this methodology was demonstrated by late-stage modification of complex molecules and synthesis of the chiral insecticide sulfoxaflor and the intermediates of related bioactive compounds. Based on experimental studies and theoretical calculations, a water-bonded high-spin iron nitrenoid species was identified as the key intermediate. The observed stereoselectivity was original from the steric repulsion between the amide unit of the ligand in the chiral cave and the bulky substituent of sulfides. Additionally, dioxazolones proved to be suitable acylnitrene precursors in the presence of an iron(III)/N,N'-dioxide complex, resulting in the formation of enantioselectivity-reversed sulfimides (14 examples, up to 81% yield, 97:3 e.r.).
Collapse
Affiliation(s)
- Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongli Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Helong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fang Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Tan Z, Liu Y, Feng X. Photoredox-catalyzed C( sp3)─H radical functionalization to enable asymmetric synthesis of α-chiral alkyl phosphine. SCIENCE ADVANCES 2024; 10:eadn9738. [PMID: 38838147 PMCID: PMC11650896 DOI: 10.1126/sciadv.adn9738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
α-Chiral alkyl phosphines are privileged structural motifs with a wide application in organic and medical synthesis. It is highly desirable to develop stereoselective methods to prepare these enantioenriched molecules. The incorporation of C(sp3)─H functionalization and chiral phosphine chemistry is much less explored, probably because of the weak reactivity of C(sp3)─H bonds and/or the challenging site- and stereoselectivity issues. Herein, we disclose a synergistic catalysis system to enable an enantioselective radical addition process of α-substituted vinylphosphine oxides. An array of diverse α-chiral alkyl phosphors compounds is smoothly accessed by using the readily available chemicals as the inert C(sp3)─H bond reagent, such as sulfides, amines, alkenes, and toluene derivatives, exerting remarkable chemo-, site-, and enantioselectivity. On the basis of the mechanistic studies, both the C(sp3)─H bond activation and the stereochemistry-determining step are proposed to involve a single-electron transfer/proton transfer process.
Collapse
Affiliation(s)
- Zhenda Tan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Zhu S, Tian X, Liu J, Dai B, Li SW. Bipyridine- N, N'-dioxides Catalysts: Design, Synthesis, and Application in Asymmetric Synthesis of 1 H-Pyrazolo[3,4- b]pyridine Analogues. Org Lett 2024; 26:3487-3492. [PMID: 38634857 DOI: 10.1021/acs.orglett.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A novel type of highly efficient chiral C2-symmetric bipyridine-N,N'-dioxides ligand application in catalyzing Michael addition/Cyclization of 5-aminopyrazoles with α,β-unsaturated 2-acyl imidazoles has been developed, affording the corresponding adducts in 85-97% yield with up to 99% enantioselectivity under mild conditions with a lower catalyst loading and broad scope. Remarkably, this protocol exhibits advantages in terms of reactivity and enantioselectivity, giving the fact that as low as 2.2 mol % of L1 and 2.0 mol % of Ni(OTf)2 can promote the title reaction on gram scale to afford the desired product with excellent enantioselectivity.
Collapse
Affiliation(s)
- Shijie Zhu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xue Tian
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shi-Wu Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
14
|
Li H, Zhou Y, Tan Z, Wang X, Zhang Y, Wang F, Feng X, Liu X. Enantioselective sulfonylation to construct 3-sulfonylated oxindoles. Chem Commun (Camb) 2024; 60:4354-4357. [PMID: 38546230 DOI: 10.1039/d4cc00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Asymmetric synthesis of 3-sulfonylated 3-substituted oxindoles through the addition of sodium sulfinate salts to 3-bromo-3-substituted oxindoles has been achieved using chiral nickel complexes of N,N'-dioxides. This method facilitates the creation of diverse chiral sulfonyl oxindoles, several of which display promising anticancer properties. Notably, the catalyst demonstrates remarkable tolerance to water, crucial for maintaining enantioselectivity. Furthermore, the utilization of topographic steric maps of the catalysts offers valuable insights into the mechanism underlying enantioselection reversal.
Collapse
Affiliation(s)
- Hongye Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zheng Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiangyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yuxin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Wen G, Feng X, Lin L. Water-enabling strategies for asymmetric catalysis. Org Biomol Chem 2024; 22:2510-2522. [PMID: 38450421 DOI: 10.1039/d3ob02122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Water possesses unique advantages, including abundance, environmental friendliness and mild effects. Undoubtedly, it is an ideal solvent or reagent in chemical syntheses. Water also shows unique abilities in catalytic asymmetric synthesis. It can accelerate reaction rates, improve diastereo- or enantioselectivities, initiate reactions, diversify chemo, diastereo- or enantioselectivities through various effects (hydrophobic, hydrogen bonding, protonation). Several reviews have demonstrated the positive effects of water in asymmetric synthesis. In this review, we summarize water-enabling strategies in the last decade, and focus on advances which reveal how water affects a reaction.
Collapse
Affiliation(s)
- Gang Wen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
16
|
Xu N, Pu M, Yu H, Yang G, Liu X, Feng X. Iron-Catalyzed Asymmetric α-Alkylation of 2-Acylimidazoles via Dehydrogenative Radical Cross-Coupling with Alkanes. Angew Chem Int Ed Engl 2024; 63:e202314256. [PMID: 37985963 DOI: 10.1002/anie.202314256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The direct α-alkylation of acyclic carbonyls with nonactivated hydrocarbons through C(sp3 )-H functionalization is both extremely promising and notably challenging, especially when attempting to achieve enantioselectivity using iron-based catalysts. We have identified a robust chiral iron complex for the oxidative cross-coupling of 2-acylimidazoles with benzylic and allylic hydrocarbons, as well as nonactivated alkanes. The readily available and tunable N,N'-dioxide catalysts of iron in connection with oxidants exhibit precise asymmetric induction (up to 99 % ee) with good compatibility in moderate to good yields (up to 88 % yield). This protocol provides an elegant and straightforward access to optically active acyclic carbonyl derivatives starting from simple alkanes without prefunctionalization. Density functional theory (DFT) calculations and control experiments were made to gain insight into the nature of C-C bond formation and the origin of enantioselectivity. We propose a radical-radical cross-coupling process enabled by the immediate interconversion between chiral ferric species and ferrous species.
Collapse
Affiliation(s)
- Nian Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Han Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Gaofei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
17
|
Xiao W, Li F, Liu X, Cao W, Feng X. Catalytic Asymmetric Synthesis of Axially and Centrally Chiral 1,2-Dihydrobenzofuro[3,2- b]pyridines through a [2 + 2] Cycloaddition/Retroelectrocyclization/Re-Cycloaddition Cascade. Org Lett 2023; 25:8005-8009. [PMID: 37906677 DOI: 10.1021/acs.orglett.3c03183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A catalytic asymmetric tandem cyclization of azadienes and ortho-alkynylnaphthols accelerated by the chiral N,N'-dioxide-gadolinium(III) complex is disclosed. This method allows the synthesis of a range of 1,2-dihydrobenzofuro[3,2-b]pyridines containing both axially and centrally chiral elements in high yields and excellent stereoselectivities (up to >99% yield, 91:9 dr, 98% ee). A control experiment revealed that this process proceeded through a multistep [2 + 2] cycloaddition/retroelectrocyclization/tautomerism/1,6-conjugate addition cascade.
Collapse
Affiliation(s)
- Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Li Z, Wang Y, Liu D, Ning L, Pu M, Lin L, Feng X. Chiral N, N'-Dioxide Ligands Tune Diastereoselectivity in Mg(II)-Catalyzed Asymmetric Ring-Opening Desymmetrization of Azetidiniums. Org Lett 2023; 25:7612-7616. [PMID: 37842957 DOI: 10.1021/acs.orglett.3c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A diastereodivergent asymmetric desymmetrization of azetidinium salts with benzothiazoleamides as carbon nucleophiles through a chiral N,N'-dioxide/Mg(II) complex-promoted ring-opening reaction is realized by tuning ligands. Both syn- and anti-chiral δ-amino acid derivatives bearing benzothiazole structure were obtained in moderate to good yields and dr and ee values. DFT calculations indicated that the diastereodivergency stems from the different size of the chiral pocket formed by variable substructures of the ligands, leading to the opposite attack direction of the nucleophiles.
Collapse
Affiliation(s)
- Zhaojing Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Deyang Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Lin Q, Wang S, Weng R, Cao W, Feng X. Chiral Lewis Acid-Catalyzed Asymmetric Multicomponent Michael Reaction through [1,2]-Phospha-Brook Rearrangement. Org Lett 2023; 25:6262-6266. [PMID: 37603544 DOI: 10.1021/acs.orglett.3c02042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The multicomponent catalytic asymmetric Pudovik addition/[1,2]-phospha-Brook rearrangement/Michael reaction sequence of isatins, phosphites, and 4-oxobutenoates was realized. A series of oxindole derivatives containing two contiguous stereocenters was obtained in high yields and excellent stereoselectivities (up to >99% yield, >95:5 dr, >99% ee) using a chiral Lewis acid catalyst. A possible catalytic model is presented to illustrate the stereocontrol.
Collapse
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Siyuan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Rui Weng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Sang X, Mo Y, Li S, Liu X, Cao W, Feng X. Bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction for construction of 5-oxazoylmethyl α-silyl alcohol. Chem Sci 2023; 14:8315-8320. [PMID: 37564412 PMCID: PMC10411629 DOI: 10.1039/d3sc01048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
A bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction was developed. The reaction proceeded well with a broad range of N-propargylamides and acylsilanes, affording the target chiral 5-oxazoylmethyl α-silyl alcohols in up to 95% yield and 99% ee under mild conditions. Importantly, this facile protocol was available for the late-stage modification of several bioactive molecules. Based on the mechanistic study and control experiments, a possible catalytic cycle and transition state are proposed to elucidate the reaction process and enantioinduction.
Collapse
Affiliation(s)
- Xinpeng Sang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Yuhao Mo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Shiya Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
21
|
He Q, Pu MP, Jiang Z, Wang H, Feng X, Liu X. Asymmetric Epoxidation of Alkenes Catalyzed by a Cobalt Complex. J Am Chem Soc 2023. [PMID: 37406347 DOI: 10.1021/jacs.3c05476] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Asymmetric epoxidation of alkenes catalyzed by nonheme chiral Mn-O and Fe-O catalysts has been well established, but chiral Co-O catalysts for the purpose remain virtually undeveloped due to the oxo wall. Herein is first reported a chiral cobalt complex to realize the enantioselective epoxidation of cyclic and acyclic trisubstituted alkenes by using PhIO as the oxidant in acetone, wherein the tetra-oxygen-based chiral N,N'-dioxide with sterically hindered amide subunits plays a crucial role in supporting the formation of the Co-O intermediate and enantioselective electrophilic oxygen transfer. Mechanistic studies, including HRMS measurements, UV-vis absorption spectroscopy, magnetic susceptibility, as well as DFT calculations, were carried out, confirming the formation of Co-O species as a quartet Co(III)-oxyl tautomer. The mechanism and the origin of enantioselectivity were also elucidated based on control experiments, nonlinear effects, kinetic studies, and DFT calculations.
Collapse
Affiliation(s)
- Qianwen He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mao-Ping Pu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zheng Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongyu Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
Xu J, Song Y, Yang J, Yang B, Su Z, Lin L, Feng X. Sterically Hindered and Deconjugative α-Regioselective Asymmetric Mannich Reaction of Meinwald Rearrangement-Intermediate. Angew Chem Int Ed Engl 2023; 62:e202217887. [PMID: 36700493 DOI: 10.1002/anie.202217887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Compared to γ-addition, the α-addition of α-branched β,γ-unsaturated aldehydes faces larger steric hindrance and disrupts the π-π conjugation, which might be why very few examples are reported. In this article, a highly diastereo- and enantioselective α-regioselective Mannich reaction of isatin-derived ketimines with α-, β- or γ-branched β,γ-unsaturated aldehydes, generated in situ from Meinwald rearrangement of vinyl epoxides, is realized by using chiral N,N'-dioxide/ScIII catalysts. A series of chiral α-quaternary allyl aldehydes and homoallylic alcohols with vicinal multisubstituted stereocenters are constructed in excellent yields, good d.r. and excellent ee values. Experimental studies and DFT (density functional theory) calculations reveal that the large steric hindrance of the ligand and the Boc (tButyloxy carbonyl) protecting group of imines are critical factors for the α-regioselectivity.
Collapse
Affiliation(s)
- Jinxiu Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Yanji Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Jia Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Bingqian Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
23
|
Zhang D, Pu M, Liu Z, Zhou Y, Yang Z, Liu X, Wu YD, Feng X. Enantioselective anti-Dihalogenation of Electron-Deficient Olefin: A Triplet Halo-Radical Pylon Intermediate. J Am Chem Soc 2023; 145:4808-4818. [PMID: 36795915 DOI: 10.1021/jacs.2c13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The textbook alkene halogenation reaction establishes straightforward access to vicinal dihaloalkanes. However, a robust catalytic method for dihalogenizing electron-deficient olefins in an enantioselective manner is still under development, and its mechanism remains controversial. Herein, we disclose efficient regio-, anti-diastereo-, and enantioselective dibromination, bromochlorination, and dichlorination reactions of enones catalyzed by a chiral N,N'-dioxide/Yb(OTf)3 complex. With the combination of electrophilic halogen and halide salts as halogenating agents, an array of homo- and heterodihalogenated derivatives is achieved in moderate to good enantioselectivities. Moreover, DFT calculations reveal that a novel triplet halo-radical pylon intermediate is probable in accounting for the exclusive regio- and anti-diastereoselectivity.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhendong Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Wang S, Zhou Y, Xiao W, Li Z, Liu X, Feng X. Asymmetric synthesis of complex tricyclo[3.2.2.0]nonenes from racemic norcaradienes: kinetic resolution via Diels-Alder reaction. Chem Sci 2023; 14:1844-1851. [PMID: 36819855 PMCID: PMC9930936 DOI: 10.1039/d2sc06490a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Herein, the enantioselective synthesis of complex tricyclo[3.2.2.0]nonenes through the Diels-Alder reaction is reported. Utilizing racemic norcaradienes prepared from the visible-light-mediated dearomative cyclopropanation of m-xylene as dienes and enone derivatives as dienophiles, the overall process represents a kinetic asymmetric transformation in the presence of a chiral cobalt(ii) complex of chiral N,N'-dioxide. High diastereo- and enantioselectivity could be obtained in most cycloaddition processes and part racemization of norcaradiene is observed. The topographic steric maps of the catalysts were collected to rationalize the relationship between reactivity and enantioselectivity with the catalysts.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zegong Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
25
|
Asymmetric catalytic alkylation of vinyl azides with 3-bromo oxindoles: water-assisted chemo- and enantiocontrol. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Qiao J, Wang S, Liu X, Feng X. Enantioselective [3+2] Cycloaddition of Donor-Acceptor Aziridines and Imines to Construct 2,5-trans-Imidazolidines. Chemistry 2023; 29:e202203757. [PMID: 36602265 DOI: 10.1002/chem.202203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
An enantioselective [3+2] cycloaddition of donor-acceptor aziridines with N-aryl protected imines was developed with a Ni(ClO4 )2 ⋅ 6H2 O/N,N'-dioxide catalyst system, providing a broad range of chiral trans-substituted imidazolidine compounds with good yields and excellent enantioselectivities (up to 99 % yield, up to 98 % ee). Control experiments indicated that the products could offer excellent diastereoselectivities with the control of chiral Ni(II)-N,N'-dioxide complex and the interaction of the substrates. The possible catalytic process was proposed to rationalize the stereocontrol.
Collapse
Affiliation(s)
- Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Shiyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
27
|
Wu Z, Zhang X, Xu N, Liu X, Feng X. Asymmetric Catalytic Aerobic Oxidative Radical Addition/Hydroxylation/1,4-Aryl Migration Reaction of Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhikun Wu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiying Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nian Xu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Jones B, Solon P, Popescu MV, Du JY, Paton R, Smith MD. Catalytic Enantioselective 6π Photocyclization of Acrylanilides. J Am Chem Soc 2022; 145:171-178. [PMID: 36571763 PMCID: PMC9837842 DOI: 10.1021/jacs.2c09267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlling absolute stereochemistry in catalytic photochemical reactions is generally challenging owing to high rates of background reactivity. Successful strategies broadly rely on selective excitation of the reaction substrate when associated with a chiral catalyst. Recent studies have demonstrated that chiral Lewis acid complexes can enable selective energy transfer from a photosensitizer to facilitate enantioselective triplet state reactions. Here, we apply this approach to the enantioselective catalysis of a 6π photocyclization through the design of an iridium photosensitizer optimized to undergo energy transfer to a reaction substrate only in the presence of a chiral Lewis acid complex. Among a group of iridium(III) sensitizers, enantioselectivity and yield closely correlate with photocatalyst triplet energy within a narrow window enabled by a modest reduction in substrate triplet energy upon binding a scandium/ligand complex. These results demonstrate that photocatalyst tuning offers a means to suppress background reactivity and improve enantioselectivity in photochemical reactions.
Collapse
Affiliation(s)
- Benjamin
A. Jones
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Pearse Solon
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Mihai V. Popescu
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.,Department
of Chemistry, Colorado State University, 1301 Center Avenue, Ft. Collins, Colorado 80523-1872, United States
| | - Ji-Yuan Du
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Robert Paton
- Department
of Chemistry, Colorado State University, 1301 Center Avenue, Ft. Collins, Colorado 80523-1872, United States,
| | - Martin D. Smith
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.,
| |
Collapse
|
29
|
Wang L, Zhou Y, Su Z, Zhang F, Cao W, Liu X, Feng X. [3,3]-Sigmatropic Rearrangements of Naphthyl 1-Propargyl Ethers: para-Propargylation and Catalytic Asymmetric Dearomatization. Angew Chem Int Ed Engl 2022; 61:e202211785. [PMID: 36317655 DOI: 10.1002/anie.202211785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/06/2022]
Abstract
The para-Claisen rearrangement of aryl 1-propargyl ethers involves two-step [3,3]-sigmatropic rearrangements and dearomatization process, which has high activation barriers and is of challenge. Here we discovered thermal para-Claisen rearrangement of naphthyl 1-propargyl ethers, and it enabled the formation of formal para-C-H propargylation products upon rearomatization. Chirality transfer occurred if optically active propargyl ethers were employed, leading to the construction of aryl/propargyl-containing stereogenic centers. Moreover, catalytic asymmetric dearomatization of naphthyl 1-propargyl ethers with different substitution at para-position gave access to benzocyclohexenones bearing all-carbon quaternary stereocenters. The reaction was accelerated by a chiral N,N'-dioxide/Co(OTf)2 complex catalyst to achieve high yields (up to 98 %) and high enantioselectivities (up to 93 % ee). The DFT calculations and experimental results provided important clues to clarify the para-Claisen rearrangement process as well as the chiral induction and remote delivery.
Collapse
Affiliation(s)
- Lifeng Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
30
|
Hou L, Zhou Y, Yu H, Zhan T, Cao W, Feng X. Enantioselective Radical Addition to Ketones through Lewis Acid-Enabled Photoredox Catalysis. J Am Chem Soc 2022; 144:22140-22149. [PMID: 36414018 DOI: 10.1021/jacs.2c09691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photocatalysis opens up a new window for carbonyl chemistry. Despite a multitude of photochemical reactions of carbonyl compounds, visible light-induced catalytic asymmetric transformations remain elusive and pose a formidable challenge. Accordingly, the development of simple, efficient, and economic catalytic systems is the ideal pursuit for chemists. Herein, we report an enantioselective radical photoaddition to ketones through a Lewis acid-enabled photoredox catalysis wherein the in situ formed chiral N,N'-dioxide/Sc(III)-ketone complex serves as a temporary photocatalyst to trigger single-electron transfer oxidation of silanes for the generation of nucleophilic radical species, including primary, secondary, and tertiary alkyl radicals, giving various enantioenriched aza-heterocycle-based tertiary alcohols in good to excellent yields and enantioselectivities. The results of electron paramagnetic resonance (EPR) and high-resolution mass spectrum (HRMS) measurements provided favorable evidence for the stereocontrolled radical addition process involved in this reaction.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Han Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
31
|
Wang L, Zhou Y, Su Z, Zhang F, Cao W, Liu X, Feng X. [3,3]‐Sigmatropic Rearrangements of Naphthyl 1‐Propargyl Ethers:
para
‐Propargylation and Catalytic Asymmetric Dearomatization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Lifeng Wang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
32
|
Wang W, Zhang F, Liu Y, Feng X. Diastereo‐ and Enantioselective Construction of Vicinal All‐Carbon Quaternary Stereocenters via Iridium/Europium Bimetallic Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208837. [DOI: 10.1002/anie.202208837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wang
- Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Yangbin Liu
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory Shenzhen 518055 China
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
33
|
Wang W, Zhang F, Liu Y, Feng X. Diastereo‐ and Enantioselective Construction of Vicinal All‐Carbon Quaternary Stereocenters via Iridium/Europium Bimetallic Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory School of Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
34
|
Chiral nickel(II) complex catalyzed asymmetric [3 + 2] cycloaddition of α-diazo pyrazoleamides with 2-siloxy-1-alkenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Yang L, Li WY, Hou L, Zhan T, Cao W, Liu X, Feng X. Nickel II-catalyzed asymmetric photoenolization/Mannich reaction of (2-alkylphenyl) ketones. Chem Sci 2022; 13:8576-8582. [PMID: 35974747 PMCID: PMC9337722 DOI: 10.1039/d2sc02721f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
A diastereo- and enantioselective photoenolization/Mannich (PEM) reaction of ortho-alkyl aromatic ketones with benzosulfonimides was established by utilizing a chiral N,N'-dioxide/Ni(OTf)2 complex as the Lewis acid catalyst. It afforded a series of benzosulfonamides and the corresponding ring-closure products, and a reversal of diastereoselectivity was observed through epimerization of the benzosulfonamide products under continuous irradiation. On the basis of the control experiments, the role of the additive LiNTf2 in achieving high stereoselectivity was elucidated. This PEM reaction was proposed to undergo a direct nucleophilic addition mechanism rather than a hetero-Diels-Alder/ring-opening sequence. A possible transition state model with a photoenolization process was proposed to explain the origin of the high level of stereoinduction.
Collapse
Affiliation(s)
- Liangkun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Wang-Yuren Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
36
|
Lin Q, Zheng S, Chen L, Wu J, Li J, Liu P, Dong S, Liu X, Peng Q, Feng X. Catalytic Regio‐ and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water. Angew Chem Int Ed Engl 2022; 61:e202203650. [DOI: 10.1002/anie.202203650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Sujuan Zheng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin Wu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
37
|
Shukla MS, Hande PE, Chandra S. Porous Silica Support for Immobilizing Chiral Metal Catalyst: Unravelling the Activity of Catalyst on Asymmetric Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meenakshi S. Shukla
- Department of Chemistry Sunandan Divatia School of Science SVKM's NMIMS (Deemed to be) University, Vile Parle (W) Mumbai 400056 India
| | - Pankaj E. Hande
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Sudeshna Chandra
- Department of Chemistry Sunandan Divatia School of Science SVKM's NMIMS (Deemed to be) University, Vile Parle (W) Mumbai 400056 India
| |
Collapse
|
38
|
Lin Q, Zheng S, Chen L, Wu J, Li J, Liu P, Dong S, Liu X, Peng Q, Feng X. Catalytic Regio‐ and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Sujuan Zheng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin Wu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
39
|
Zhang F, Ren BT, Zhou Y, Liu Y, Feng X. Enantioselective construction of cis-hydroindole scaffolds via an asymmetric inverse-electron-demand Diels-Alder reaction: application to the formal total synthesis of (+)-minovincine. Chem Sci 2022; 13:5562-5567. [PMID: 35694337 PMCID: PMC9116300 DOI: 10.1039/d2sc01458k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
cis-Hydroindole scaffolds widely exist in a large number of natural products, pharmaceuticals, and organocatalysts. Therefore, the development of efficient and enantioselective methods for the construction of cis-hydroindoles is of great interest and importance. Herein, a novel approach for the enantioselective synthesis of cis-hydroindole scaffolds has been realized through a chiral N,N'-dioxide/Mg(OTf)2 complex catalyzed asymmetric inverse-electron-demand Diels-Alder (IEDDA) reaction of 2-pyrones and cyclic enamines. A series of substituted cis-hydroindole derivatives bearing multiple contiguous stereocenters and functional groups were obtained in good to excellent yields and enantioselectivities (up to 99% yield, and 95% ee) under mild reaction conditions. Moreover, the enantioselective formal total synthesis of (+)-minovincine was concisely furnished with high efficiency and stereoselectivity to demonstrate the synthetic potential of this method.
Collapse
Affiliation(s)
- Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | | | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yangbin Liu
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory Shenzhen 518055 China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
40
|
Tan Z, Zhu S, Liu Y, Feng X. Photoinduced Chemo‐, Site‐ and Stereoselective α‐C(sp
3
)−H Functionalization of Sulfides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhenda Tan
- Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 China
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Shibo Zhu
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Yangbin Liu
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Xiaoming Feng
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
41
|
Tang X, Su Z, Lin Q, Lin L, Dong S, Feng X. Asymmetric catalytic α‐selective allylation of ketones with allyltrifluoroborates using dual‐functional chiral
In
III
/
N
,
N
′‐dioxide complex. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoxue Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Qianchi Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
42
|
Ke C, Cao Q, Luo Y, Liu X, Feng X. Catalytic asymmetric amination of azlactones with azobenzenes. Chem Commun (Camb) 2022; 58:5881-5884. [PMID: 35470829 DOI: 10.1039/d2cc01656g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported an efficient asymmetric amination of azlactones with N-aryl-N-aroyldiazenes through a chiral N,N'-dioxide-based Lewis acid catalyst. The multicoordination ability of Nd(III) enabled it to simultaneously activate and to locate the two reactants for N-selective addition. Hydrazine-bearing azlactone derivatives were obtained in moderate to good yields with high enantioselectivity.
Collapse
Affiliation(s)
- Chaoqi Ke
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qiuhui Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
43
|
Tan Z, Zhu S, Liu Y, Feng X. Photoinduced Chemo-, Site- and Stereoselective α-C(sp 3 )-H Functionalization of Sulfides. Angew Chem Int Ed Engl 2022; 61:e202203374. [PMID: 35445505 DOI: 10.1002/anie.202203374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
The ubiquity of sulfur-containing molecules in biologically active natural products and pharmaceuticals has long attracted synthetic chemists to develop efficient strategies towards their synthesis. The strategy of direct α-C(sp3 )-H modification of sulfides provides a streamlining access to complex sulfur-containing molecules. Herein, we report a photoinduced chemo-, site- and stereoselective α-C(sp3 )-H functionalization of sulfides using isatins as the photoredox reagent and coupling partner catalyzed by a chiral gallium(III)-N,N'-dioxide complex. The reaction proceeds through a verified single-electron transfer (SET) mechanism with high efficiency, excellent functional group tolerance, as well as a broad substrate scope. Importantly, this cross-coupling protocol is highly selective for the direct late-stage functionalization of methionine-related peptides, regardless of the inherent structural similarity and complexity of diverse residues.
Collapse
Affiliation(s)
- Zhenda Tan
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shibo Zhu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
44
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C-H Alkylation via a Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022; 61:e202115715. [PMID: 35040550 DOI: 10.1002/anie.202115715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/08/2023]
Abstract
An asymmetric allylic C-H functionalization has been developed by making use of transient chiral nucleophiles, as well as bimetallic synergistic catalysis with an achiral Pd0 catalyst and a chiral N,N'-dioxide-CoII complex. A variety of β-ketoesters and N-Boc oxindoles coupled with allylbenzenes and aliphatic terminal alkenes were well tolerated, furnishing the desired allylic alkylation products in high yields (up to 99 %) with excellent regioselectivities and enantioselectivities (up to 99 % ee).
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
45
|
Zhang F, Sang X, Zhou Y, Cao W, Feng X. Enantioselective Synthesis of Azetidines through [3 + 1]-Cycloaddition of Donor-Acceptor Aziridines with Isocyanides. Org Lett 2022; 24:1513-1517. [PMID: 35147442 DOI: 10.1021/acs.orglett.2c00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enantioselective [3 + 1]-cycloaddition of racemic donor-acceptor (D-A) aziridines with isocyanides was first realized under mild reaction conditions using a chiral N,N'-dioxide/MgII complex as catalyst, providing a facile route to enantioenriched exo-imido azetidines with good to excellent yield (up to 99%) and enantioselectivity (up to 94% ee). An obvious chiral amplification effect was observed in this system, and an explanation was elucidated based on the experimental investigation and X-ray crystal structure of the enantiomerically pure catalyst.
Collapse
Affiliation(s)
- Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xinpeng Sang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
46
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C−H Alkylation via Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongkai Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yang Xu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
47
|
Li Y, Li WY, Tang X, Liu X, Feng X. Synthesis of chiral pyridine-oxazolines via catalytic asymmetric Heine reaction of meso-N-(2-picolinoyl)-aziridines. Org Chem Front 2022. [DOI: 10.1039/d1qo01900g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric Heine reaction of (meso)-N-(2-picolinoyl)-aziridines catalyzed by a chiral ytterbium(III)–N,N’-dioxide complex was established. A novel library of pyridine-oxazolines was obtained in decent yields and enantioselectivities, which show potential as...
Collapse
|
48
|
He C, Wu Z, Zhou Y, Cao W, Feng X. Asymmetric catalytic nitrooxylation and azidation of β-keto amides/esters with hypervalent iodine reagents. Org Chem Front 2022. [DOI: 10.1039/d1qo01634b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral Lewis acid-catalyzed enantioselective nitrooxylation and azidation of cyclic and acyclic β-keto amides/esters with hypervalent iodine(iii) reagents.
Collapse
Affiliation(s)
- Changqiang He
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhikun Wu
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
49
|
Ruan P, Tang Q, Yang Z, Liu X, Feng X. Enantioselective formal [2 + 2 + 2] cycloaddition of 1,3,5-triazinanes to construct tetrahydropyrimidin-4-one derivatives. Chem Commun (Camb) 2021; 58:1001-1004. [PMID: 34939630 DOI: 10.1039/d1cc06549a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A chiral Lewis acid-catalyzed enantioselective formal [2 + 2 + 2] cycloaddition of 1,3,5-triazinanes with azlactones or β,γ-unsaturated pyrazole amides was developed to synthesize chiral tertiary/quaternary tetrahydropyrimidin-4-one derivatives with good yields and enantioselectivities. Two competitive reaction pathways were proposed based on experiments.
Collapse
Affiliation(s)
- Peiran Ruan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qiong Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
50
|
Dai L, Liu W, Zhou Y, Zeng Z, Hu X, Cao W, Feng X. Catalytic Asymmetric Halogenation/Semipinacol Rearrangement of 3-Hydroxyl-3-vinyl Oxindoles: A Stereodivergent Kinetic Resolution Process. Angew Chem Int Ed Engl 2021; 60:26599-26603. [PMID: 34669225 DOI: 10.1002/anie.202110315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Indexed: 01/05/2023]
Abstract
A highly enantioselective halogenation/semipinacol rearrangement of isatin-derived allylic alcohols has been developed with a chiral N,N'-dioxide/ScIII complex as catalyst. This strategy involved a pivotal stereodivergent kinetic resolution process and provided a facile and efficient entry to optically active halo-substituted quinolone derivatives and quinoline alkaloids with a quaternary stereocenter simultaneously under mild reaction conditions. Based on the control experiments together with kinetic studies and DFT calculations, a possible catalytic cycle was proposed to illustrate the reaction process and enantiocontrol.
Collapse
Affiliation(s)
- Li Dai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wen Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zi Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xinyue Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|