1
|
Bardales AC, Smirnov V, Taylor K, Kolpashchikov DM. DNA Logic Gates Integrated on DNA Substrates in Molecular Computing. Chembiochem 2024; 25:e202400080. [PMID: 38385968 DOI: 10.1002/cbic.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
Due to nucleic acid's programmability, it is possible to realize DNA structures with computing functions, and thus a new generation of molecular computers is evolving to solve biological and medical problems. Pioneered by Milan Stojanovic, Boolean DNA logic gates created the foundation for the development of DNA computers. Similar to electronic computers, the field is evolving towards integrating DNA logic gates and circuits by positioning them on substrates to increase circuit density and minimize gate distance and undesired crosstalk. In this minireview, we summarize recent developments in the integration of DNA logic gates into circuits localized on DNA substrates. This approach of all-DNA integrated circuits (DNA ICs) offers the advantages of biocompatibility, increased circuit response, increased circuit density, reduced unit concentration, facilitated circuit isolation, and facilitated cell uptake. DNA ICs can face similar challenges as their equivalent circuits operating in bulk solution (bulk circuits), and new physical challenges inherent in spatial localization. We discuss possible avenues to overcome these obstacles.
Collapse
Affiliation(s)
- Andrea C Bardales
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Physical Sciences Bld. Rm. 255, Orlando, FL 32816-2366, Florida
| | - Viktor Smirnov
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, Russian Federation
| | - Katherine Taylor
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Physical Sciences Bld. Rm. 255, Orlando, FL 32816-2366, Florida
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Physical Sciences Bld. Rm. 255, Orlando, FL 32816-2366, Florida
| |
Collapse
|
2
|
Xiang Y, Liu J, Chen J, Xiao M, Pei H, Li L. MoS 2-Based Sensor Array for Accurate Identification of Cancer Cells with Ensemble-Modified Aptamers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15861-15869. [PMID: 38508220 DOI: 10.1021/acsami.3c19159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In this work, we present an array-based chemical nose sensor that utilizes a set of ensemble-modified aptamer (EMAmer) probes to sense subtle physicochemical changes on the cell surface for cancer cell identification. The EMAmer probes are engineered by domain-selective incorporation of different types and/or copies of positively charged functional groups into DNA scaffolds, and their differential interactions with cancer cells can be transduced through competitive adsorption of fluorophore-labeled EMAmer probes loaded on MoS2 nanosheets. We demonstrate that this MoS2-EMAmer-based sensor array enables rapid and effective discrimination among six types of cancer cells and their mixtures with a concentration of 104 cells within 60 min, achieving a 94.4% accuracy in identifying blinded unknown cell samples. The established MoS2-EMAmer sensing platform is anticipated to show significant promise in the advancement of cancer diagnostics.
Collapse
Affiliation(s)
- Ying Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jingjing Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
3
|
Lv F, Chen J, Wan Y, Si J, Song M, Zhu F, Du S, Shang Y, Man T, Zhu L, Ren K, Piao Y, Zhu C, Deng SY. Amplification of an Electrochemiluminescence-Emissive Aptamer into DNA Nanotags for Sensitive Fecal Calprotectin Determination. Anal Chem 2023; 95:18564-18571. [PMID: 38060825 DOI: 10.1021/acs.analchem.3c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The precision additive manufacturing and tessellated multitasking out of the structural DNA nanotechnology enable a configurable expression of densified electrochemiluminescent (ECL) complexes, which would streamline the bioconjugation while multiplying signals. Herein, a completely DNA-scaffold ECL "polyploid" was replicated out via the living course of rolling circle amplification. The amplicon carried the aptameric sequences of ZnPPIX/TSPP porphyrin as photoreactive centers that rallied at periodical intervals of the persistent extension into a close-packed nanoflower, ZnPDFI/II. Both microscopies and electrophoresis proved the robust nesting of guests at their deployed gene loci, while multispectral comparisons among cofactor substituents pinpointed the pivotal roles of singlet seclusion and Zn2+-chelation for the sake of intensive ECL irradiation. The adversity-resilient hydrogel texture made lipoidal filmogens as porphyrinic ECL prerequisites to be of no need at all, thus not only simplifying assay flows but also inspiring an in situ labeling plan. Upon bioprocessing optimization, an enriched probe ZnPDFIII was further derived that interpolated the binding motif related to calprotectin as validated by molecular docking and affinity titration. With it being a strongly indicative marker of inflammatory bowel disease (IBD), a competitive ECL aptasensing strategy was contrived, managing a signal-on and sensitive detection in mild conditions with a subnanogram-per-milliliter limit of detection by 2 orders of magnitude lower than the standard method as well as a comparable accuracy in clinical stool sample testing. Distinct from those conventional chemophysical rebuilding routes, this de novo biosynthetic fusion demonstrated a promising alternative toward ECL-source bioengineering, which may intrigue vibrant explorations of other ECL-shedding fabrics and, accordingly, a new bioanalytic mode downstream.
Collapse
Affiliation(s)
- Fujin Lv
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meiyan Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fulin Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Songyuan Du
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuzhe Shang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Sheng-Yuan Deng
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Li W, Xie H, Gou L, Zhou Y, Wang H, Li R, Zhang Y, Liu S, Liu J, Lu Y, He ZE, Chen N, Li J, Zhu Y, Wang C, Lv M. DNA-Based Hydrogels with Multidrug Sequential Release for Promoting Diabetic Wound Regeneration. JACS AU 2023; 3:2597-2608. [PMID: 37772175 PMCID: PMC10523493 DOI: 10.1021/jacsau.3c00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Diabetic wound (DW) regeneration is highly challenging due to persistent bacterial infection, excessive production of reactive oxygen species (ROS), prolonged inflammatory response, and insufficient angiogenesis. Ideal management requires the integration and sequential release of bactericidal, antioxidative, anti-inflammatory, and angiogenic agents during DW repair. Here, we develop a DNA-based multidrug hydrogel, termed Agilegel, to promote the efficient healing of DW. Hierarchically structured Agilegel can precisely control the sequential release of vascular endothelial growth factor-alpha (VEGF-α), silver nanoclusters (AgNCs), and interleukin-10 (IL-10) through covalent bonds in its primary structure (phosphate backbone), noncovalent bonds in its secondary structure (base pairs), and physical encapsulation in its advanced structure (pores), respectively. We demonstrate that Agilegel can effectively eliminate bacterial infection through AgNCs and mitigate ROS production through DNA scaffolds. Moreover, during the inflammatory phase, Agilegel promotes the polarization of macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype using IL-10. Subsequently, Agilegel stimulates cell proliferation, angiogenesis, and extracellular matrix formation through the action of VEGF-α, thereby accelerating the closure of DW. Our results indicate that DNA hydrogels confer the capacity to regulate the sequential release of drugs, enabling them to effectively manage the phased intervention of multiple drugs in the treatment of complex diseases within physiological environments.
Collapse
Affiliation(s)
- Wei Li
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Xie
- College
of Chemistry and Materials Science, Shanghai
Normal University, Shanghai 200234, China
| | - Liping Gou
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Wang
- Laboratory
of Dermatology, West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Ruoqing Li
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Department
of General Medicine, Chongqing University
Central Hospital, Chongqing Emergency Medical Center, Chongqing Key
Laboratory of Emergency Medicine, Chongqing 400014, China
| | - Yong Zhang
- Key
Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Key
Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Key
Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Key
Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | - Nan Chen
- College
of Chemistry and Materials Science, Shanghai
Normal University, Shanghai 200234, China
| | - Jiang Li
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Zhu
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Chengshi Wang
- Department
of Endocrinology and Metabolism, Center for Diabetes and Metabolism
Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Lv
- College
of Chemistry and Materials Science, Shanghai
Normal University, Shanghai 200234, China
| |
Collapse
|
5
|
Li X, Cheng J, Zeng K, Wei S, Xiao J, Lu Y, Zhu F, Wang Z, Wang K, Wu X, Zhang Z. Accelerated Hybridization Chain Reaction Kinetics Using Poly DNA Tetrahedrons and Its Application in Detection of Aflatoxin B1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41237-41246. [PMID: 37625096 DOI: 10.1021/acsami.3c05506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Traditional hybridization chain reaction (HCR) as a popular isothermal amplification technique shows some inevitable disadvantages in bioanalysis due to its relatively slow kinetics, which could be markedly promoted when the HCR initiator occurs under tension. Herein, a poly DNA tetrahedrons (pTDNs)-mediated HCR was successfully constructed to make its initiator in a stretched state by long-range electrostatic forces owing to the superimposed electrostatic interactions derived from the synthesized pTDNs, and it was hypothesized that it could remarkably enhance HCR performance, which was testified by theoretical simulations and experimental studies. Consequently, pTDNs-mediated HCR was applied to develop a novel immunoassay for rapid and sensitive detection of aflatoxin B1 as a proof-of-concept, and its signal amplification was attributed to the increased G4 DNAzyme that loaded on the second antibody. Our work paves a promising way using simple DNA frameworks alone to heighten HCR kinetics for reaction speed improvement and signal amplification in bioanalysis.
Collapse
Affiliation(s)
- Xuesong Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Zeng
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shulin Wei
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaxuan Xiao
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanyan Lu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
DNA computational device-based smart biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Gong H, Dai Q, Peng P. Cell-Membrane-Anchored DNA Logic-Gated Nanoassemblies for In Situ Extracellular Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43026-43034. [PMID: 36053489 DOI: 10.1021/acsami.2c13735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular K+ and adenosine triphosphate (ATP) levels are significantly elevated in the tumor microenvironment (TME) and can be used as biomarkers for early cancer detection and tumor localization. Most reported TME sensors only respond to single abnormal factors, resulting in a lack of accuracy and specificity for the detection of complex environments. Thus, precisely locating the TME remains challenging. In this work, we aimed to develop an intelligent DNA nanoassembly controlled by a "YES-AND" logic circuit using a bimolecular G-quadruplex (G4) and ATP aptamer as logical control units. As a proof of concept, in the presence of K+ (input 1) and ATP (input 2), the YES-AND Boolean operator returned a true value and the output was the fluorescence resonance energy transfer (FRET) signal, indicating high sensitivity and selectivity. After being anchored to living cell surfaces, this logic nanosensor imaged extracellular K+ and ATP present at abnormal levels in situ. Owing to diverse disease markers in the TME, this novel logic sensor might hold great promise for the targeted delivery of intelligent anticancer drugs and Boolean logic-controlled treatment.
Collapse
Affiliation(s)
- Hangsheng Gong
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qian Dai
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Pai Peng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
8
|
Liu S, Yan Q, Cao S, Wang L, Luo SH, Lv M. Inhibition of Bacteria In Vitro and In Vivo by Self-Assembled DNA-Silver Nanocluster Structures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41809-41818. [PMID: 36097389 DOI: 10.1021/acsami.2c13805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antimicrobial nanomaterials hold great promise for bacteria-infected wound healing. However, it remains a challenge to balance antimicrobial efficacy and biocompatibility for these artificial antimicrobials. Here we employed biocompatible genetic molecule DNA as a building material to fabricate antimicrobial materials, including self-assembled Y-shaped DNA-silver nanocluster composite (Y-Ag) and Y-Ag hydrogel (Y-Ag-gel). We demonstrate that macroscopic and microcosmic DNA-Ag composites can effectively inhibit bacterial growth but do not affect cell proliferation in vitro. In particular, Y-Ag spray can speed up the process of wound healing in vivo. Considering the efficacy and advantages of DNA-based materials, our findings provide a promising route to fabricate a novel wound dressing such as spray and hydrogel for therapeutic wound healing.
Collapse
Affiliation(s)
- Shima Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Hunan 416000, China
| | - Qinglong Yan
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shuting Cao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shi-Hua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Min Lv
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
9
|
Liu X, Xiang J, Cheng H, Wang Y, Li F. Engineering Multipedal
DNA
Walker on Paper for Sensitive Electrochemical Detection of Plant
MicroRNA. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 People's Republic of China
| | - Junzhu Xiang
- College of plant health & medicine Qingdao Agricultural University Qingdao 266109 People's Republic of China
| | - Hao Cheng
- College of plant health & medicine Qingdao Agricultural University Qingdao 266109 People's Republic of China
| | - Yuying Wang
- College of plant health & medicine Qingdao Agricultural University Qingdao 266109 People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 People's Republic of China
| |
Collapse
|
10
|
Chen Q, Wang X, Chen J, Xiang Y, Xiao M, Pei H, Li L. Multiple-Aptamer-Integrated DNA-Origami-Based Chemical Nose Sensors for Accurate Identification of Cancer Cells. Anal Chem 2022; 94:10192-10197. [PMID: 35786864 DOI: 10.1021/acs.analchem.2c01646] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing simple, rapid, and accurate methods for cancer cell identification could facilitate early cancer diagnosis and tumor metastasis research. Herein, we develop a novel chemical nose sensor that employs the collective recognition abilities of a set of multiple-aptamer-integrated DNA origami (MADO) probes for discriminative identification of cancer cells. By controlling the types and/or copies of aptamers assembled on the DNA origami nanostructure, we constructed five MADO probes with differential binding affinities (ranging from 3.08 to 78.92 nM) to five types of cells (HeLa, MDA-MB-468, MCF-7, HepG2, and MCF-10A). We demonstrate the utility of the MADO-based chemical nose sensor in the identification of blinded unknown cell samples with a 95% accuracy. This sensing platform holds great potential for applications in medical diagnostics.
Collapse
Affiliation(s)
- Qiaoji Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Jing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Ying Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|