1
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
2
|
Wang Q, Shao C, Hua R, Yin H, Chen FX. Me 3SiBr-promoted cascade electrophilic thiocyanation/cyclization of ortho-alkynylanilines to synthesize indole derivatives. Org Biomol Chem 2024; 22:4031-4035. [PMID: 38690868 DOI: 10.1039/d4ob00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A Lewis acid-promoted electrophilic thiocyanation/cyclization of ortho-alkynylanilines for the synthesis of indole derivatives has been developed. The reaction utilizes Me3SiBr as the Lewis acid and N-thiocyanatosuccinimide as the thiocyanation reagent. A series of 2-aryl-3-thiocyanato indoles were prepared in moderate to high yields under mild conditions without metals and oxidants. It provides an efficient protocol for the construction of the indole skeleton and C-SCN and C-N bonds in one step as well.
Collapse
Affiliation(s)
- Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| |
Collapse
|
3
|
Li X, Cheng Y, Li Y, Sun F, Zhan X, Yang Z, Yang J, Du Y. DMSO/SOCl 2-Enabled Synthesis of 3-Chloroindoles via Desulfonylative Chlorocyclization of N,N-Disubstituted 2-Alkynylanilines. J Org Chem 2024; 89:2039-2049. [PMID: 38241277 DOI: 10.1021/acs.joc.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The application of the DMSO/SOCl2 system enabled the intramolecular cyclization/chlorination of N,N-disubstituted 2-alkynylanilines, leading to the synthesis of a series of 3-chloroindoles with moderate to good yields. Differing from the previously reported interrupted Pummerer reaction featuring the introduction of SMe moiety, the current approach adopted an alternative pathway that realized the incorporation of chlorine atom to the indole skeleton via a desulfonylative chlorocyclization process.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yifu Cheng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Li
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Fengxia Sun
- Research Center for Chemical Safety & Security and Verification Technology & College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiangyu Zhan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingyue Yang
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Zhou YJ, Fang YG, Yang K, Lin JY, Li HQ, Chen ZJ, Wang ZY. DBDMH-Promoted Methylthiolation in DMSO: A Metal-Free Protocol to Methyl Sulfur Compounds with Multifunctional Groups. Molecules 2023; 28:5635. [PMID: 37570605 PMCID: PMC10419854 DOI: 10.3390/molecules28155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Organic thioethers play an important role in the discovery of drugs and natural products. However, the green synthesis of organic sulfide compounds remains a challenging task. The convenient and efficient synthesis of 5-alkoxy-3-halo-4-methylthio-2(5H)-furanones from DMSO is performed via the mediation of 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), affording a facile route for the sulfur-functionalization of 3,4-dihalo-2(5H)-furanones under transition metal-free conditions. This new approach has demonstrated the functionalization of non-aromatic Csp2-X-type halides with unique structures containing C-X, C-O, C=O and C=C bonds. Compared with traditional synthesis methods using transition metal catalysts with ligands, this reaction has many advantages, such as the lower temperature, the shorter reaction time, the wide substrate range and good functional group tolerance. Notably, DMSO plays multiple roles, and is simultaneously used as an odorless methylthiolating reagent and safe solvent.
Collapse
Affiliation(s)
- Yong-Jun Zhou
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Yong-Gan Fang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Kai Yang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huan-Qing Li
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Zu-Jia Chen
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| |
Collapse
|
5
|
Yu M, Jin T, Wang X, Li H, Ji D, Yao J, Zeng H, Shi S, Xu K, Zhang L. Regioselective intramolecular cyclization of o-alkynyl arylamines with the in situ formation of ArXCl to construct poly-functionalized 3-selenylindoles. RSC Adv 2023; 13:6210-6216. [PMID: 36825294 PMCID: PMC9941895 DOI: 10.1039/d3ra00030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
In this article, a practical and metal-free method for the synthesis of poly-functionalized 3-selenyl/sulfenyl/telluriumindoles from o-alkynyl arylamines has been achieved. In this protocol, the in situ formation of selenenyl chloride, sulfenyl chloride or tellurenyl chloride is considered as the key intermediate and the 3-selenyl/sulfenyl/telluriumindoles can be obtained in good to excellent yields. Furthermore, the product 2-phenyl-3-(phenylselanyl)-1-tosyl-1H-indole can be selectively oxidized to compounds 2-phenyl-3-(phenylseleninyl)-1-tosyl-1H-indole and 2-phenyl-3-(phenylselenonyl)-1-tosyl-1H-indole in good yields.
Collapse
Affiliation(s)
- Minhui Yu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Tao Jin
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | | | - Haohu Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Decai Ji
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Senlei Shi
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| |
Collapse
|
6
|
Sterligov G, Ageshina AA, Rzhevskiy SA, Shurupova OV, Topchiy MA, Minaeva LI, Asachenko AF. One-Pot Modified Madelung Synthesis of 3-Tosyl- and 3-Cyano-1,2-disubstituted Indoles. ACS OMEGA 2022; 7:38505-38511. [PMID: 36340104 PMCID: PMC9631411 DOI: 10.1021/acsomega.2c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A One-pot, two-step procedure for the synthesis of 1,2-disubstituted-3-tosyl and 1,2-disubstituted-3-cyanoindoles from the corresponding N-(o-tolyl)benzamides is reported. The developed procedure is operationally simple, does not utilize any transition metals, and provides variably substituted indoles in good yields from readily available starting materials.
Collapse
|
7
|
Zhang J, Zhang B, He J, Shi H, Du Y. Divergent synthesis of 2-methylthioindole and 2-unsubstituted indole derivatives mediated by SOCl 2 and dimethyl/diethyl sulfoxides. Org Biomol Chem 2022; 20:7886-7890. [PMID: 36169012 DOI: 10.1039/d2ob01580c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free divergent synthesis of indole compounds dependent on a reagent via intramolecular C(sp2)-H amination was described. The reaction of 2-vinylanilines with DMSO/SOCl2 at 70 °C was found to give 2-thiomethylindoles, while replacing DMSO with diethyl sulfoxide afforded 2-unsubstituted indoles in a highly selective manner.
Collapse
Affiliation(s)
- Jingran Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Beibei Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxin He
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haofeng Shi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Li X, Wang X, Li Y, Xiao J, Du Y. Application of DMSO as a methylthiolating reagent in organic synthesis. Org Biomol Chem 2022; 20:4471-4495. [PMID: 35593912 DOI: 10.1039/d2ob00570k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the past decades, DMSO has been widely used not only as a common solvent but also as an environmentally benign oxidant in various organic transformations. Most strikingly, DMSO can be used as a sulfur source to construct methylthiolated building blocks of potential biologically active molecules, which is a remarkable achievement in the field of organic sulfur chemistry. The purpose of this review article is to summarize and discuss the main developments in the application of DMSO as a methylthiolating reagent to introduce the -SMe functionality in organic synthesis.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxi Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Vavsari VF, Nikbakht A, Balalaie S. Annulation of 2‐Alkynylanilines: The Versatile Chemical Compounds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vaezeh Fathi Vavsari
- KN Toosi: KN Toosi University of Technology Chemistry IRAN (ISLAMIC REPUBLIC OF)
| | - Ali Nikbakht
- K N Toosi University of Technology Faculty of General Science Chemistry Department of Chemistry, Kavian 9, Dr. Shariati Street 15875-4416 Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Saeed Balalaie
- K N Toosi University of Technology Faculty of General Science Chemistry Department PO Box 15875-4416 15875-4416 Tehran IRAN (ISLAMIC REPUBLIC OF)
| |
Collapse
|
10
|
Zhang B, Li X, Li X, Yu Z, Zhao B, Wang X, Du Y, Zhao K. An Interrupted Pummerer Reaction Mediated by a Hypervalent Iodine(III) Reagent: In Situ Formation of RSCl and Its Application for the Synthesis of 3-Sulfenylated Indoles. J Org Chem 2021; 86:17274-17281. [PMID: 34806887 DOI: 10.1021/acs.joc.1c02404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An interrupted Pummerer reaction of PhICl2 and sulfoxides was found to in situ generate reactive organosulfenyl chloride, which enabled the intramolecular electrophilic cyclization of 2-alkynylanilines, generating 3-sulfenylated indole with a good to excellent yield under metal-free conditions. One striking feature of the approach is that sulfoxide regeneration can be realized via the oxidation of the formed sulfides by the generated hypervalent iodine species.
Collapse
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyang Yu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Bingyue Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaofan Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kang Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|