1
|
Tong S, Niu J, Wang Z, Jiao Y, Fu Y, Li D, Pan X, Sheng N, Yan L, Min P, Chen D, Cui S, Liu Y, Lin S. The Evolution of Microfluidic-Based Drug-Loading Techniques for Cells and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403422. [PMID: 39152940 DOI: 10.1002/smll.202403422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.
Collapse
Affiliation(s)
- Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Peiru Min
- Shanghai 9th People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, 200240, China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Huang Y, Liu C, Feng Q, Sun J. Microfluidic synthesis of nanomaterials for biomedical applications. NANOSCALE HORIZONS 2023; 8:1610-1627. [PMID: 37723984 DOI: 10.1039/d3nh00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The field of nanomaterials has progressed dramatically over the past decades with important contributions to the biomedical area. The physicochemical properties of nanomaterials, such as the size and structure, can be controlled through manipulation of mass and heat transfer conditions during synthesis. In particular, microfluidic systems with rapid mixing and precise fluid control are ideal platforms for creating appropriate synthesis conditions. One notable example of microfluidics-based synthesis is the development of lipid nanoparticle (LNP)-based mRNA vaccines with accelerated clinical translation and robust efficacy during the COVID-19 pandemic. In addition to LNPs, microfluidic systems have been adopted for the controlled synthesis of a broad range of nanomaterials. In this review, we introduce the fundamental principles of microfluidic technologies including flow field- and multiple field-based methods for fabricating nanoparticles, and discuss their applications in the biomedical field. We conclude this review by outlining several major challenges and future directions in the implementation of microfluidic synthesis of nanomaterials.
Collapse
Affiliation(s)
- Yanjuan Huang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Piunti C, Cimetta E. Microfluidic approaches for producing lipid-based nanoparticles for drug delivery applications. BIOPHYSICS REVIEWS 2023; 4:031304. [PMID: 38505779 PMCID: PMC10903496 DOI: 10.1063/5.0150345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/15/2023] [Indexed: 03/21/2024]
Abstract
The importance of drug delivery for disease treatment is supported by a vast literature and increasing ongoing clinical studies. Several categories of nano-based drug delivery systems have been considered in recent years, among which lipid-based nanomedicines, both artificial and cell-derived, remain the most approved. The best artificial systems in terms of biocompatibility and low toxicity are liposomes, as they are composed of phospholipids and cholesterol, the main components of cell membranes. Extracellular vesicles-biological nanoparticles released from cells-while resembling liposomes in size, shape, and structure, have a more complex composition with up to hundreds of different types of lipids, proteins, and carbohydrates in their membranes, as well as an internal cargo. Although nanoparticle technologies have revolutionized drug delivery by enabling passive and active targeting, increased stability, improved solubilization capacity, and reduced dose and adverse effects, the clinical translation remains challenging due to manufacturing limitations such as laborious and time-consuming procedures and high batch-to-batch variability. A sea change occurred when microfluidic strategies were employed, offering advantages in terms of precise particle handling, simplified workflows, higher sensitivity and specificity, and good reproducibility and stability over bulk methods. This review examines scientific advances in the microfluidics-mediated production of lipid-based nanoparticles for therapeutic applications. We will discuss the preparation of liposomes using both hydrodynamic focusing of microfluidic flow and mixing by herringbone and staggered baffle micromixers. Then, an overview on microfluidic approaches for producing extracellular vesicles and extracellular vesicles-mimetics for therapeutic applications will describe microfluidic extrusion, surface engineering, sonication, electroporation, nanoporation, and mixing. Finally, we will outline the challenges, opportunities, and future directions of microfluidic investigation of lipid-based nanoparticles in the clinic.
Collapse
|
4
|
Zhang Y, Chen Q, Zhu Y, Pei M, Wang K, Qu X, Zhang Y, Gao J, Qin H. Targeting inorganic nanoparticles to tumors using biological membrane-coated technology. MedComm (Beijing) 2022; 3:e192. [PMID: 36514780 PMCID: PMC9732394 DOI: 10.1002/mco2.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Inorganic nanoparticles have extensively revolutionized the effectiveness of cancer therapeutics due to their distinct physicochemical properties. However, the therapeutic efficiency of inorganic nanoparticles is greatly hampered by the complex tumor microenvironment, patient heterogeneity, and systemic nonspecific toxicity. The biomimetic technology based on biological membranes (cell- or bacteria-derived membranes) is a promising strategy to confer unique characteristics to inorganic nanoparticles, such as superior biocompatibility, prolonged circulation time, immunogenicity, homologous tumor targeting, and flexible engineering approaches on the surface, resulting in the enhanced therapeutic efficacy of inorganic nanoparticles against cancer. Therefore, a greater push toward developing biomimetic-based nanotechnology could increase the specificity and potency of inorganic nanoparticles for effective cancer treatment. In this review, we summarize the recent advances in biological membrane-coated inorganic nanoparticles in cancer precise therapy and highlight the different types of engineered approaches, applications, mechanisms, and future perspectives. The surface engineering of biological membrane can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor therapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of biological membrane-coated inorganic nanoparticles.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qian Chen
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yefei Zhu
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Manman Pei
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kairuo Wang
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiao Qu
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yang Zhang
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Precision Medicine CenterTaizhou Central HospitalTaizhouZhejiangChina
| | - Jie Gao
- Changhai Clinical Research UnitShanghai Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Huanlong Qin
- Nanotechnology and Intestinal Microecology Research CenterShanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
5
|
Abesekara MS, Chau Y. Recent advances in surface modification of micro- and nano-scale biomaterials with biological membranes and biomolecules. Front Bioeng Biotechnol 2022; 10:972790. [PMID: 36312538 PMCID: PMC9597319 DOI: 10.3389/fbioe.2022.972790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Surface modification of biomaterial can improve its biocompatibility and add new biofunctions, such as targeting specific tissues, communication with cells, and modulation of intracellular trafficking. Here, we summarize the use of various natural materials, namely, cell membrane, exosomes, proteins, peptides, lipids, fatty acids, and polysaccharides as coating materials on micron- and nano-sized particles and droplets with the functions imparted by coating with different materials. We discuss the applicability, operational parameters, and limitation of different coating techniques, from the more conventional approaches such as extrusion and sonication to the latest innovation seen on the microfluidics platform. Methods commonly used in the field to examine the coating, including its composition, physical dimension, stability, fluidity, permeability, and biological functions, are reviewed.
Collapse
|
6
|
Tian F, Cai L, Liu C, Sun J. Microfluidic technologies for nanoparticle formation. LAB ON A CHIP 2022; 22:512-529. [PMID: 35048096 DOI: 10.1039/d1lc00812a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional nanoparticles (NPs) hold immense promise in diverse fields due to their unique biological, chemical, and physical properties associated with size or morphology. Microfluidic technologies featuring precise fluid manipulation have become versatile toolkits for manufacturing NPs in a highly controlled manner with low batch-to-batch variability. In this review, we present the fundamentals of microfluidic fabrication strategies, including mixing-, droplet-, and multiple field-based microfluidic methods. We highlight the formation of functional NPs using these microfluidic reactors, with an emphasis on lipid NPs, polymer NPs, lipid-polymer hybrid NPs, supramolecular NPs, metal and metal-oxide NPs, metal-organic framework NPs, covalent organic framework NPs, quantum dots, perovskite nanocrystals, biomimetic NPs, etc. we discuss future directions in microfluidic fabrication for accelerated development of functional NPs, such as device parallelization for large-scale NP production, highly efficient optimization of NP formulations, and AI-guided design of multi-step microfluidic reactors.
Collapse
Affiliation(s)
- Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Cai
- Department of Laboratory Medicine, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Jiang F, Xiang N. Integrated Microfluidic Handheld Cell Sorter for High-Throughput Label-Free Malignant Tumor Cell Sorting. Anal Chem 2022; 94:1859-1866. [PMID: 35020366 DOI: 10.1021/acs.analchem.1c04819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Handheld sample preparation devices are urgently required for point-of-care diagnosis in resource-limited settings. In this paper, we develop a novel handheld sorter with a multifunction integrated microfluidic chip. The integrated microfluidic handheld sorter (μHCS) is composed of three units, including cartridges, shells, and core integrated microchip. The integrated microchip contains two flow regulators for achieving the on-chip regulation of the input flows generated by a low-cost diaphragm pump to the desired flow rates and a spiral inertial microfluidic channel for size-based cell separation. After introducing the conceptual design of our μHCS system, the performances of the separate spiral channel and flow regulator are systematically characterized and optimized, respectively. Finally, the prototype of the μHCS is successfully assembled to separate the malignant tumor cells from the clinical pleural effusions. Our μHCS is simple to use, inexpensive, portable, and compact and can be used for high-throughput label-free separation of rare cells from large volume samples in resource-limited areas.
Collapse
Affiliation(s)
- Fengtao Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, New South Wales 2008, Australia
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|