1
|
Roy P, Mahato K, Shrestha D, Mohandoss S, Lee SW, Lee YR. Recent advances in site-selective transformations of β-enaminones via transition-metal-catalyzed C-H functionalization/annulation. Org Biomol Chem 2024; 23:36-58. [PMID: 39529594 DOI: 10.1039/d4ob01612b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
β-Enaminone transformation strategies are widely employed in the synthesis of numerous biologically active drugs and natural products, highlighting their significance in medicinal chemistry. In recent years, various strategies have been developed for synthesizing several five- and six-membered heterocycles, as well as substituted polyaromatic scaffolds, which serve as crucial synthons in drug development, from β-enaminones. Among these approaches, site-selective transformations of β-enaminones via C-H activation and annulation have been particularly well explored. This review summarizes the most recent literature (over the past eight years) on β-enaminone transformations for developing bioactive scaffolds through site-selective C-H bond functionalization and annulation.
Collapse
Affiliation(s)
- Prasanta Roy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Karuna Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Divya Shrestha
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Seung Woo Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Lu C, Song Y, Gao L, Wang Y. Recent advances in the applications of gem-difluoromethylene alkynes. Org Biomol Chem 2024; 22:8700-8713. [PMID: 39415722 DOI: 10.1039/d4ob01499e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
As a special class of alkynes, gem-difluoromethylene alkynes exhibit a variety of fascinating properties due to the presence of the gem-difluoro substitution. This substitution highlights the distinctive fluorine effects in influencing the chemoselectivity of reactions. As a result, chemical scientists have shown great interest and enthusiasm for investigating their reactions. In this review, we briefly summarize recent advances in transition metal-catalysed reactions of gem-difluoromethylene alkynes with multiple reaction pathways. Their mechanistic studies and challenges will be highlighted. The purpose of this review is to provide illustrations of elegant gem-difluoromethylene alkynes and thereby elicit further interest among synthetic chemists in developing innovative transformations of gem-difluoromethylene alkynes.
Collapse
Affiliation(s)
- Chengmei Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, P.R. China.
| | - Yu Song
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, P.R. China.
| | - Liuzhou Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, P.R. China.
| | - Yidong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, P.R. China.
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Intelli AJ, Wayment CZ, Lee RT, Yuan K, Altman RA. Palladium and copper co-catalyzed chloro-arylation of gem-difluorostyrenes - use of a nitrite additive to suppress β-F elimination. Chem Sci 2024:d4sc04939j. [PMID: 39386912 PMCID: PMC11456958 DOI: 10.1039/d4sc04939j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
The installation of fluorine and fluorinated functional groups in organic molecules perturbs the physicochemical properties of those molecules and enables the development of new therapeutics, agrichemicals, biological probes and materials. However, current synthetic methodologies cannot access some fluorinated functional groups and fluorinated scaffolds. One such group, the gem-difluorobenzyl motif, might be convergently synthesized by reacting a nucleophilic aryl precursor and an electrophilic gem-difluoroalkene. Previous attempts have relied on forming unstable anionic or organometallic intermediates that rapidly decompose through a β-F elimination process to deliver monofluorovinyl products. In contrast, we report a fluorine-retentive palladium and copper co-catalyzed chloro-arylation of gem-difluorostyrenes that takes advantage of a nitrite (NO2 -) additive to avoid the favorable β-F elimination pathway that forms monofluorinated products, instead delivering difluorinated products.
Collapse
Affiliation(s)
- Andrew J Intelli
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Coriantumr Z Wayment
- James Tarpo Jr and Margaret Tarpo Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| | - Ryan T Lee
- Department of Chemistry and Chemical Biology, Rutgers University Piscataway New Jersey 08854 USA
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target Clinical Pharmacology, Guangzhou Medical University Guangzhou 511436 China
| | - Ryan A Altman
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
- James Tarpo Jr and Margaret Tarpo Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| |
Collapse
|
5
|
Liang M, Yan S, Xu Y, Ma C, Zhang X, Fan X. Synthesis of CF 3-Isoquinolinones and Imidazole-Fused CF 3-Isoquinolinones Based on C-H Activation-Initiated Cascade Reactions of 2-Aryloxazolines. J Org Chem 2024; 89:10180-10196. [PMID: 38963050 DOI: 10.1021/acs.joc.4c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Presented herein are novel syntheses of CF3-isoquinolinones and imidazole fused CF3-isoquinolinones based on the cascade reactions of 2-aryloxazolines with trifluoromethyl imidoyl sulfoxonium ylides. The formation of CF3-isoquinolinone involves an intriguing cascade process including oxazolinyl group-assisted aryl alkylation through C(sp2)-H bond metalation, carbene formation, migratory insertion, and proto-demetalation followed by intramolecular condensation and water-promoted oxazolinyl ring-scission. With this method, the isoquinolinone scaffold tethered with valuable functional groups was effectively constructed. By taking advantage of the functional groups embedded therein, the products thus obtained could be readily transformed into imidazole-fused CF3-isoquinolinones or coupled with some clinical drugs to furnish hybrid compounds with potential applications in drug development. In general, the developed protocols feature expeditious and convenient formation of valuable CF3-heterocyclic skeletons, broad substrate scope, and ready scalability. In addition, studies on the activity of selected products against some human cancer cell lines demonstrated their potential as lead compounds for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Miaomiao Liang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengnan Yan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuanshuang Xu
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chunhua Ma
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xinying Zhang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xuesen Fan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Zuo Y, Zuo P, Liu M, Wang X, Du J, Li X, Zhang P, Xu Z. Recent approaches for the synthesis of heterocycles from amidines via a metal catalyzed C-H functionalization reaction. Org Biomol Chem 2024; 22:5014-5031. [PMID: 38831700 DOI: 10.1039/d4ob00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Transition metal catalyzed C-H bond activation has become one of the most important tools for constructing new chemical bonds. Introducing directing groups to the substrates is the key to a successful reaction, these directing groups can also be further transformed in the reaction. Amidines with their unique structure and reactivity are ideal substrates for transition metal-catalyzed C-H transformations. This review describes the major advances and mechanistic investigations of the C-H activation/annulation tandem reactions of amidines until early 2024, focusing on metal-catalyzed C-H activation of amidines with unsaturated compounds, such as alkynes, ketone, vinylene carbonate, cyclopropanols and their derivatives. Meanwhile this manuscript also explores the reaction of amidines with different carbene precursors, for example diazo compounds, azide, triazoles, pyriodotriazoles, and sulfoxonium ylides as well as their own C-H bond activation/cyclization reactions. A bright outlook is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pengfei Zuo
- Kunshan Customs, Kunshan, Jiangsu 215300, People's Republic of China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoling Li
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pinghua Zhang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| |
Collapse
|
7
|
Liu X, Shi S, Ding W, He Z, Shen Y, Nian Y, Wu X. Accessing 7,8-Dihydroquinoline-2,5-diones via Rh-Catalyzed Olefinic C-H Activation/[4+2] Cyclization. Org Lett 2024; 26:5136-5140. [PMID: 38847357 DOI: 10.1021/acs.orglett.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Herein, we report a rhodium-catalyzed C-H activation/[4+2] cyclization reaction between α,β-unsaturated amides and iodonium ylides for the synthesis of novel 7,8-dihydroquinoline-2,5-diones and analogues. This protocol provides a series of pyridones fused with saturated cycles with good functional group compatibility, good water and air tolerance, and good to excellent yields under mild and green reaction conditions. Additionally, scale-up synthesis can be smoothly performed with as low as 0.25 mol % catalyst loading. Recycling experiments and different transformation experiments were also carried out to demonstrate the potential synthetic utility of this protocol.
Collapse
Affiliation(s)
- Xueqing Liu
- Guangzhou University of Chinese Medicine, Guangdong 510006, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Sijia Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Wenqian Ding
- Guangzhou University of Chinese Medicine, Guangdong 510006, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zhiyue He
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yu Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Nian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Wu
- Guangzhou University of Chinese Medicine, Guangdong 510006, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
8
|
Jiao L, Zhang B, Qu B, Zhai R, Chen X. Rh(III)-Catalyzed Direct C-H Cyclization of N-Nitrosoanilines with 1,3-Dicarbonyl Compounds: A Route to Tetrahydrocarbazol-4-ones. J Org Chem 2023. [PMID: 37449739 DOI: 10.1021/acs.joc.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A novel and efficient Rh(III)-catalyzed direct C-H bond tandem annulation of N-nitrosoanilines with 1,3-dicarbonyl compounds through two C-H bond cleavage was developed. This protocol provides a rapid access to a series of valuable tetrahydrocarbazol-4-ones with the feature of readily available starting materials, broad functional group tolerance, and in situ generation of carbene precursors. Importantly, some reaction products exhibited promising antiproliferative activity in cancer cell lines.
Collapse
Affiliation(s)
- Liulin Jiao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Bo Zhang
- Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000,China
| | - Bohong Qu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Ruirui Zhai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Xun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
9
|
Kumar S, Borkar V, Mujahid M, Nunewar S, Kanchupalli V. Iodonium ylides: an emerging and alternative carbene precursor for C-H functionalizations. Org Biomol Chem 2022; 21:24-38. [PMID: 36416081 DOI: 10.1039/d2ob01644c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metal-catalyzed successive activation and functionalization of arene/heteroarene is one of the most fundamental transformations in organic synthesis and leads to privileged scaffolds in natural products, pharmaceuticals, agrochemicals, and fine chemicals. Particularly, transition-metal-catalyzed C-H functionalization of arenes with carbene precursors via metal carbene migratory insertion has been well studied. As a result, diverse carbene precursors have been evaluated, such as diazo compounds, sulfoxonium ylides, triazoles, etc. In addition, there have been significant developments with the use of iodonium ylides as carbene precursors in recent years, and these reactions proceed with high efficiencies and selectivities. This review provides a comprehensive overview of iodonium ylides in C-H functionalizations, including the scope, limitations, and their potential synthetic applications.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vaishnavi Borkar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Mohd Mujahid
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| |
Collapse
|
10
|
Yang Z, Liu C, Lei J, Zhou Y, Gao X, Li Y. Rh(III)-catalyzed C-H/C-C bond annulation of enaminones with iodonium ylides to form isocoumarins. Chem Commun (Camb) 2022; 58:13483-13486. [PMID: 36383089 DOI: 10.1039/d2cc05899e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A straightforward approach to synthesise isocoumarins via Rh(III)-catalyzed C-H/C-C bond activation/annulation cascade of enaminones and iodonium ylides has been explored. The established protocol is characterized by an exceedingly simple reaction system, high regioselectivity and good functional group tolerance. Moreover, this strategy may provide a new route to cleavage of the C(sp2)-C(O) bond of unstrained ketones.
Collapse
Affiliation(s)
- Zi Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Chaoshui Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Jieni Lei
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yi Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Xiaohui Gao
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yaqian Li
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| |
Collapse
|
11
|
Nunewar S, Kumar S, Meshram AW, Kanchupalli V. Ru(II)-Catalyzed C–H Functionalization of 2-Arylbenzimidazoles with Iodonium Ylides: A Straightforward Access to Bridgehead Polycyclic N-Heterocycles. J Org Chem 2022; 87:13757-13762. [DOI: 10.1021/acs.joc.2c01429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Saiprasad Nunewar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Sanjeev Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Akhilesh Waman Meshram
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Vinaykumar Kanchupalli
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| |
Collapse
|
12
|
Zhang D, He X, Yang T, Liu S. Insights into the Activation Mode of α-Carbonyl Sulfoxonium Ylides in Rhodium-Catalyzed C-H Activation: A Theoretical Study. ChemistryOpen 2022; 11:e202100254. [PMID: 35212172 PMCID: PMC9278107 DOI: 10.1002/open.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
A computational study has been performed to investigate the mechanism of RhIII -catalyzed C-H bond activation using sulfoxonium ylides as a carbene precursor. The stepwise and concerted activation modes for sulfoxonium ylides were investigated. Detailed theoretical results showed that the favored stepwise pathway involves C-H bond activation, carbonization, carbene insertion, and protonation. The free energy profiles for dialkylation of 2-phenylpyridine were also calculated to account for the low yield of this reaction. Furthermore, the substituent effect was elucidated by comparing the energy barriers for the protonation of meta- and para-substituted sulfoxonium ylides calculated by density functional theory.
Collapse
Affiliation(s)
- Dianmin Zhang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies College of Chemistry and Environmental EngineeringChongqing University of Arts and SciencesChongqing402160China
| | - Xiaofang He
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies College of Chemistry and Environmental EngineeringChongqing University of Arts and SciencesChongqing402160China
| | - Tao Yang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies College of Chemistry and Environmental EngineeringChongqing University of Arts and SciencesChongqing402160China
| | - Song Liu
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies College of Chemistry and Environmental EngineeringChongqing University of Arts and SciencesChongqing402160China
- School of Chemistry and Chemical EngineeringChongqing UniversityChongqing400030China
| |
Collapse
|
13
|
Wu F, Xiao L, Xie H, Chen SY, Song JL, Zheng YC, Liu YZ, Zhang SS. Rhodium(III)-catalyzed regioselective C(sp 2)-H activation of indoles at the C4-position with iodonium ylides. Org Biomol Chem 2022; 20:5055-5059. [PMID: 35695281 DOI: 10.1039/d2ob00722c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report a Rh(III)-catalyzed C4-selective activation of indoles by using iodonium ylides as carbene precursors. This protocol proceeded under redox neutral reaction conditions and provided important coupling products with good tolerance of functional groups and high yields. In addition, one-pot synthesis and scale-up and mechanistic studies were also conducted.
Collapse
Affiliation(s)
- Fuhai Wu
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510006, P. R. China.
| | - Lin Xiao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Hui Xie
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yan-Zhi Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
14
|
Li H, Gu H, Lu Y, Xu N, Han N, Li J, Liu J, Liu J. Synthesis of Tetrahydrocarbazol-4-ones via Rh(III)-Catalyzed C-H Activation/Annulation of Arylhydrazines with Iodonium Ylides. J Org Chem 2022; 87:8142-8150. [PMID: 35675060 DOI: 10.1021/acs.joc.2c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rhodium(III)-catalyzed C-H activation followed by intramolecular annulation reactions between arylhydrazines and iodonium ylides under suitable conditions has been described. Tetrahydrocarbazol-4-ones are readily achieved with moderate to excellent yields. The synthetic protocol features a wide range of substrates with high functional group tolerance. The gram-scale reaction and derivatization of the product demonstrate the synthetic practicality and utilization of this method.
Collapse
Affiliation(s)
- He Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Haichun Gu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Narenchaoketu Han
- College of Traditional Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiaqi Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
15
|
Yin C, Li L, Yu C. Rh(III)-catalyzed C-H annulation of sulfoxonium ylides with iodonium ylides towards isocoumarins. Org Biomol Chem 2022; 20:1112-1116. [PMID: 35040469 DOI: 10.1039/d1ob02273c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The direct synthesis of isocoumarin skeletons has been realized through the Rh(III)-catalyzed [3 + 3] annulation of sulfoxonium ylides with iodonium carbenes. The synthetic protocol was constructed efficiently with broad functional group tolerance and mild reaction conditions. This reaction can be formally viewed as the result of C-H activation, carbene insertion and nucleophilic addition processes. Furthermore, the further conversions of the product and gram-scale reactions were also demonstrate to support the effectiveness of the synthesis protocol.
Collapse
Affiliation(s)
- Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Lianghao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
16
|
Li X, Zhao Q, Shen Y, Ma R. Rh(III)-Catalyzed C-H Diamidation and Diamidation/Intramolecular Cyclization of N-Iminopyridinium Ylides with Dioxazolones. J Org Chem 2022; 87:3468-3481. [PMID: 35080889 DOI: 10.1021/acs.joc.1c03042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient Rh(III)-catalyzed C-H diamidation and diamidation/intramolecular cyclization of N-iminopyridinium ylides with dioxazolones has been developed, providing diamidated products and benzoxazinone products in good to excellent yields. Notably, the tunable selectivity of this reaction can be controlled by simply switching the solvent and the temperature. This reaction features operational simplicity, a broad substrate scope, and a good functional group tolerance.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qing Zhao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yang Shen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ran Ma
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
17
|
Xie P, Gao H, Li X, Jiang Y, Liu B. Rh( iii)-Catalyzed C–C coupling of unactivated C(sp 3)–H bonds with iodonium ylides for accessing all-carbon quaternary centers. Org Chem Front 2022. [DOI: 10.1039/d2qo00667g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rhodium-catalyzed inert C(sp3)–H activation/carbene insertion has been realized, leading to the construction of all-carbon quaternary centers.
Collapse
Affiliation(s)
- Pengfei Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huixing Gao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
18
|
Li X, li D, zhang X. Ru(II)-Catalyzed C-H Bond Activation/Annulation of N-iminopyridinium Ylides with Sulfoxonium Ylides. Org Biomol Chem 2022; 20:1475-1479. [DOI: 10.1039/d1ob02427b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru(II)-catalyzed C-H bond activation/annulation of N-iminopyridinium ylides with sulfoxonium ylides has been developed for the synthesis of diverse functionalized isocoumarin derivatives. This method features broad substrate scope, high-functional-group tolerance,...
Collapse
|
19
|
|
20
|
Kumar S, Nunewar S, Kanchupalli V. Rh(III)‐Catalyzed Cross‐Coupling/Annulation of Two Carbene Precursors: Construction of Dihydrobenzo[
c
]chromen‐6‐one Scaffolds and Application in the Total Synthesis of Cannabinol. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
21
|
Dai Y, Li X, Liu B. Rh(III)-Catalyzed Efficient Synthesis of Isocoumarins from Cyclohexanediones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|