1
|
Bhatt T, Natte K. Transfer Hydrogenation of N- and O-Containing Heterocycles Including Pyridines with H 3N-BH 3 Under the Catalysis of the Homogeneous Ruthenium Precatalyst. Org Lett 2024; 26:866-871. [PMID: 38270139 DOI: 10.1021/acs.orglett.3c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In this study, we report a transfer hydrogenation protocol that utilizes borane-ammonia (H3N-BH3) as the hydrogen source and a commercially available RuCl3·xH2O precatalyst for the selective aromatic reduction of quinolines, quinoxalines, pyridines, pyrazines, indoles, benzofurans, and furan derivatives to form the corresponding alicyclic heterocycles in good to excellent isolated yields. Applications of this straightforward protocol include the efficient preparation of useful key pharmaceutical intermediates, such as donepezil and flumequine, including a biologically active compound.
Collapse
Affiliation(s)
- Tarun Bhatt
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Kishore Natte
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| |
Collapse
|
2
|
Chen S, Xue W, Tang C. Core-Shell Nano-Cobalt Catalyzed Chemoselective Reduction of N-Heteroarenes with Ammonia Borane. CHEMSUSCHEM 2022; 15:e202201522. [PMID: 36161705 DOI: 10.1002/cssc.202201522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
An easily prepared core-shell heterogeneous nanocobalt catalyst was reported, which could achieve selective reduction of N-heteroarenes with ammonia borane under mild conditions and ambient atmosphere. Various quinoline, quinoxaline, naphthyridine, isoquinoline, acridine, and phenanthroline derivatives were hydrogenated with high selectivity and efficiency. Notably, substrates bearing sensitive functional groups under molecular hydrogen reduction conditions, such as cyano, ester, and halogens were well tolerated by the catalytic system. Moreover, with our novel method several bioactive molecules were prepared. Also, this catalyst could be applied in the liquid organic hydrogen storage system by reversible hydrogenation and dehydrogenation of heteroarene in high efficiencies.
Collapse
Affiliation(s)
- Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Wenxuan Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
3
|
Wang C, Zhou L, Qiu J, Yang K, Song Q. Rh-Catalyzed diastereoselective addition of arylboronic acids to α-keto N-tert-butanesulfinyl aldimines: synthesis of α-amino ketones. Org Chem Front 2022. [DOI: 10.1039/d1qo01721g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we present a diastereoselective addition of arylboronic acids to α-keto N-tert-butanesulfinyl aldimines catalyzed by a Rh(i) catalyst.
Collapse
Affiliation(s)
- Cece Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Lu Zhou
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jian Qiu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| |
Collapse
|
4
|
Jian K, Li B, Zhu S, Xuan Q, Song Q. Chemoselective reduction of α,β-unsaturated ketones to allylic alcohols under catalyst-free conditions. Org Chem Front 2022. [DOI: 10.1039/d1qo01754c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy of chemoselective reduction of α, β-unsaturated ketones was developed in our group. H3N·BH3 would prefer to coordinate with CO bond, forming six-membered ring, and ketones were hydrogenated via concerted double-hydrogen-transfer process.
Collapse
Affiliation(s)
- Kaixia Jian
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Bingnan Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Shuxian Zhu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organo-fluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007
| |
Collapse
|
5
|
Song H, Xiao Y, Zhang Z, Xiong W, Wang R, Guo L, Zhou T. Switching Selectivity in Copper-Catalyzed Transfer Hydrogenation of Nitriles to Primary Amine-Boranes and Secondary Amines under Mild Conditions. J Org Chem 2021; 87:790-800. [PMID: 34958575 DOI: 10.1021/acs.joc.1c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and efficient copper-catalyzed selective transfer hydrogenation of nitriles to primary amine-boranes and secondary amines with an oxazaborolidine-BH3 complex is reported. The selectivity control was achieved under mild conditions by switching the solvent and the copper catalysts. More than 30 primary amine-boranes and 40 secondary amines were synthesized via this strategy in high selectivity and yields of up to 95%. The strategy was applied to the synthesis of 15N labeled in 89% yield.
Collapse
Affiliation(s)
- Hao Song
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, PR China.,State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, PR China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, PR China
| | - Zhuohua Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, PR China
| | - Wanjin Xiong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, PR China
| | - Ren Wang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, PR China.,CNPC Engineering Technology R & D Company Limited, Beijing 102206, PR China
| | - Liangcheng Guo
- Sinopec Jianghan Salt Chemical Hubei Company Limited, Hubei 433121, PR China
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, PR China.,State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
6
|
Xu H, Ye M, Yang K, Song Q. Regioselective Cross-Coupling of Isatogens with Boronic Acids to Construct 2,2-Disubstituted Indolin-3-one Derivatives. Org Lett 2021; 23:7776-7780. [PMID: 34617759 DOI: 10.1021/acs.orglett.1c02808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein we present a transition-metal-free cross-coupling reaction of isatogens with boronic acids through a 1,4-metalate shift of a boron "ate" complex. This coupling reaction provides a feasible method to deliver valuable 2,2-disubstituted indolin-3-one derivatives with excellent regioselectivity, which exhibit operational simplicity, good functional group tolerance, and a broad substrate scope.
Collapse
Affiliation(s)
- Hetao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingxing Ye
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China.,Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Wang S, Xu J, Song Q. Modular Synthesis of Polysubstituted Quinolin-3-amines by Oxidative Cyclization of 2-(2-Isocyanophenyl)acetonitriles with Organoboron Reagents. Org Lett 2021; 23:6789-6794. [PMID: 34382811 DOI: 10.1021/acs.orglett.1c02373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polysubstituted quinolin-3-amines are vital structural motifs because of their broad biological activities as well as versatile transformational abilities. However, they are not easily accessible. We disclose a protocol with Mn(III) acetate as a mild one-electron oxidant promoting a radical process to construct polysubstituted quinolin-3-amines. 2-(2-Isocyanophenyl)acetonitriles and organoboron reagents are suitable substrates for this reaction. The remarkable advantages of this protocol are the practical method, mild approach, high reaction efficiency, and good compatibility of functional groups, providing straightforward access to functional quinoline derivatives.
Collapse
Affiliation(s)
- Shihui Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|