Zhu D, Zheng K, Qiao J, Xu H, Chen C, Zhang P, Shen C. One-step synthesis of PdCu@Ti
3C
2 with high catalytic activity in the Suzuki-Miyaura coupling reaction.
NANOSCALE ADVANCES 2022;
4:3362-3369. [PMID:
36131714 PMCID:
PMC9417861 DOI:
10.1039/d2na00327a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Owing to their enhanced catalytic stability and cyclability, two-dimensional (2D) material-supported Pd-based bimetallic alloys have promising applications for catalytic reactions. Furthermore, the alloying strategy can effectively reduce costs and improve catalytic performance. In this paper, we report a one-step reduction method to synthesize a novel heterogeneous catalyst, PdCu@Ti3C2, with good catalytic performance. The composition and structure of the as-prepared catalyst were characterized by inductively coupled plasma-mass spectrometry (ICP-MS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The catalyst particles, which were identified as a PdCu bimetallic alloy, exhibited good dispersion on the substrate. The performance of the catalyst in the Suzuki-Miyaura coupling reaction was studied, and the results showed that PdCu@Ti3C2 had excellent catalytic activity, similar to that of homogeneous Pd catalysts such as Pd(PPh3)4. Moreover, the prepared catalyst could be reused at least 10 times in the Suzuki-Miyaura coupling reaction with high yield.
Collapse