1
|
Ma X, Shi L, Fu Y, Zhang B, Zhang X. Construction of Different Cyanine Dye Supramolecular Aggregates Induced by Rare Earth Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Lei Shi
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Yao Fu
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Buyue Zhang
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Xiufeng Zhang
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine North China University of Science and Technology Tangshan 063210 China
| |
Collapse
|
2
|
Jia H, Zhang J, Li Y, Xu D, Yin S. Metallacycle-cored fluorescent supramolecular polymer networks for the detection of acidic environments. Dalton Trans 2022; 51:14434-14438. [PMID: 36156667 DOI: 10.1039/d2dt02783f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the challenges, supramolecular polymers (SPs) have received significant attention. In this study, pH-responsive fluorescent SPs were prepared by a bottom-up strategy. The rhombohedral metallacycle-cored supramolecular coordination complex (SCC) was first prepared by metal-ligand coordination between the 120° pyridinedione boron difluoride and the 60° crown ether-based platinum, which then interacted with ammonium salt-containing covalent polymers to form SP networks. These networks can potentially be used for the detection of organic acid solutions and inorganic acid vapours.
Collapse
Affiliation(s)
- Haiqi Jia
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, China.
| | - Jinjin Zhang
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, China.
| | - Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, China. .,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Phenylthiol-BODIPY-based supramolecular metallacycles for synergistic tumor chemo-photodynamic therapy. Proc Natl Acad Sci U S A 2022; 119:e2203994119. [PMID: 35858319 PMCID: PMC9303851 DOI: 10.1073/pnas.2203994119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The development of more effective tumor therapy remains challenging and has received widespread attention. In the past decade, there has been growing interest in synergistic tumor therapy based on supramolecular coordination complexes. Herein, we describe two triangular metallacycles (1 and 2) constructed by the formation of pyridyl boron dipyrromethene (BODIPY)-platinum coordination. Metallacycle 2 had considerable tumor penetration, as evidenced by the phenylthiol-BODIPY ligand imparting red fluorescent emission at ∼660 nm, enabling bioimaging, and transport visualization within the tumor. Based on the therapeutic efficacy of the platinum(II) acceptor and high singlet oxygen (1O2) generation ability of BODIPY, 2 was successfully incorporated into nanoparticles and applied in chemo-photodynamic tumor therapy against malignant human glioma U87 cells, showing excellent synergistic therapeutic efficacy. A half-maximal inhibitory concentration of 0.35 μM was measured for 2 against U87 cancer cells in vitro. In vivo experiments indicated that 2 displayed precise tumor targeting ability and good biocompatibility, along with strong antitumor effects. This work provides a promising approach for treating solid tumors by synergistic chemo-photodynamic therapy of supramolecular coordination complexes.
Collapse
|
4
|
Chai Y, Qin P, Li X, Wei T, Lin Q, Zhang Y, Yao H, Qu W, Shi B. A Pd
2
L
4
Metallacage‐Cored Supramolecular Amphiphile and Its Application in Dual‐Responsive Controllable Release. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongping Chai
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Peng Qin
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Xupeng Li
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Qi Lin
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
- Gansu Natural Energy Research Institute Lanzhou 730046 China
| | - Hong Yao
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Bingbing Shi
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
5
|
Abstract
Although boron dipyrromethene (BODIPY)-based metallacycles are expected to be promising candidates for imaging probes and therapeutic agents, their biomedical applications are restricted by their short absorption/emission wavelengths. In this work, we report a rhombic metallacycle M with broad absorption in the near-infrared (NIR) range and emissions at wavelengths >800 nm, which exhibits an efficient photothermal conversion capacity. Metallacycle M was encapsulated via Pluronic F127 to fit the biotic environment, resulting in the generation of F127/M nanoparticles (NPs) with high hydrophilicity and biocompatibility. In vitro studies demonstrated that the F127/M NPs underwent efficient cellular uptake and exhibited satisfactory photothermal therapeutic activity. Furthermore, in vivo experiments revealed that tumor growth was effectively inhibited, and the degree of undesirable biological damage was minimal in treatment with F127/M NPs and laser irradiation. Finally, the F127/M NPs could be visualized through NIR fluorescence imaging in living mice, thereby allowing their distribution to be monitored in order to enhance treatment accuracy during photothermal therapy. We envision that such BODIPY-based metallacycles will provide emerging opportunities for the development of novel therapeutic agents for biomedical applications.
Collapse
|
6
|
Lu F, Chen Y, Fu B, Chen S, Wang L. Multistimuli responsive supramolecular polymer networks via host-guest complexation of pillararene-containing polymers and sulfonium salts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Lv X, Xia D, Cheng Y, Chao J, Wei X, Wang P. Construction of a pillararene-based supramolecular polymer network and its application in efficient removal of dyes from water. Dalton Trans 2021; 51:910-917. [PMID: 34935804 DOI: 10.1039/d1dt03390e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An AB-type monomer based on a pillar[5]arene host and an imidazolium salt guest was successfully synthesized through a facile way. This monomer can self-assemble into linear supramolecular polymers in chloroform. After the addition of silver ions, the imidazolium salt group coordinated with silver ions to crosslink the linear supramolecular polymers at their ends, resulting in the formation of supramolecular polymer networks. Meanwhile, after further adding iodide ions, the supramolecular polymer network changed back to the linear supramolecular polymer. As a result, the topological structure of the system can be reversibly tuned. Furthermore, this supramolecular polymer network can be applied to remove organic dyes in water, suggesting its great potential in the treatment of waste water.
Collapse
Affiliation(s)
- Xiaoqing Lv
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| | - Xuehong Wei
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China.
| |
Collapse
|
8
|
Liu J, Sun X, Huang T, Zhang Y, Yao H, Wei T, Lin Q. Influence of Monomers’ Structure on the Assembly and Material Property of Pillar[5]
arene‐Based
Supramolecular Polymer Gels. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan Liu
- College of Chemical Engineering, Northwest Minzu University (Northwest University for Nationalities), Xibei Xincun Lanzhou Gansu 730000 China
| | - Xiao‐Wen Sun
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Ting‐Ting Huang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Hong Yao
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Qi Lin
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|