1
|
Guo Z, Zhang D, Wang Y, Bai J, Hu J, Cen S, Yu L. An antiviral oligomerized linear thiopeptide with a nitrile group from soil-derived Streptomyces sp. CPCC 203702. RSC Adv 2024; 14:8260-8263. [PMID: 38469195 PMCID: PMC10925956 DOI: 10.1039/d4ra01496k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
A new linear thiopeptide, bernitrilecin (1), was isolated from Streptomyces sp. CPCC 203702. Compound 1 is the first example of a nitrile-bearing thiopeptide. Its structure and absolute configuration were elucidated by extensive analysis of spectroscopic data and Marfey's method. The biosynthesis of the nitrile unit for 1 was proposed to be through oxidations, decarboxylation, and dehydration. Compound 1 exhibited significant anti-influenza A virus activity with the IC50 value of 16.7 μM.
Collapse
Affiliation(s)
- Zhe Guo
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 People's Republic of China
| | - Dewu Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 People's Republic of China
| | - Yujia Wang
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms Beijing 100050 People's Republic of China
| | - Jinglin Bai
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 People's Republic of China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms Beijing 100050 People's Republic of China
| | - Jun Hu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 People's Republic of China
| | - Shan Cen
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms Beijing 100050 People's Republic of China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 People's Republic of China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms Beijing 100050 People's Republic of China
| |
Collapse
|
2
|
Zhong G. Cytochromes P450 Associated with the Biosyntheses of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:371-388. [PMID: 37876494 PMCID: PMC10591300 DOI: 10.1021/acsbiomedchemau.3c00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 10/26/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a class of exponentially increased natural products with characteristic chemical structures, topologies, and biosynthetic mechanisms as well as exceptional bioactivities including antibacteria, antitumors, and antiviruses. The biosynthesis of RiPP proceeds via a ribosomally assembled precursor peptide that undergoes varied post-translational modifications to generate a mature peptide. Cytochrome P450 (CYP or P450) monooxygenases are a superfamily of heme-containing enzymes that span a wide range of secondary metabolite biosynthetic pathways due to their broad substrate scopes and excellent catalytic versatility. In contrast to the enormous quantities of RiPPs and P450s, the P450 associated RiPP biosynthesis is comparatively limited, with most of their functions and timings remaining mysterious. Herein, this Review aims to provide an overview on the striking roles of P450s in RiPP biosyntheses uncovered to date and to illustrate their remarkable functions, mechanisms, as well as remaining challenges. This will shed light on novel P450 discovery and characterizations in RiPP biosyntheses.
Collapse
Affiliation(s)
- Guannan Zhong
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
3
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
4
|
Fang Y, Wang J, Tang Y, Guo Z, Bai J, Wu L, Su J, Cen S, Yu L, Zhang D. Geninthiocins E and F, two new cyclic thiopeptides with antiviral activities from soil-derived Streptomyces sp. CPCC 200267 using OSMAC strategy. J Antibiot (Tokyo) 2023; 76:101-104. [PMID: 36434277 DOI: 10.1038/s41429-022-00580-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/26/2022]
Abstract
On the basis of the one strain-many compounds (OSMAC) strategy, two new cyclic thiopeptides, geninthiocins E and F, together with four known geninthiocin derivatives, geninthiocins A, B, C, and val-geninthiocin were isolated from Streptomyces sp. CPCC 200267. Their structures and absolute configurations were elucidated by extensive spectroscopic analyses and Marfey's method. Geninthiocin E (1), val-geninthiocin (3), geninthiocin A (4), and geninthiocin B (5) exhibited significant anti-influenza A virus activities with the IC50 values of 28.7, 15.3, 7.3, and 18.3 μM, respectively. Compounds 3 and 4 showed moderate antibacterial activities against Staphylococcus aureus.
Collapse
Affiliation(s)
- Yuan Fang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Pharmacy, Yantai University, Yantai, China
| | - Zhe Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinglin Bai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linzhuan Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Tang Y, Gu G, Wang J, Guo Z, Zhang T, Cen S, Dai S, Yu L, Zhang D. Four new chromone derivatives from the Arctic fungus Phoma muscivora CPCC 401424 and their antiviral activities. J Antibiot (Tokyo) 2023; 76:88-92. [PMID: 36536084 DOI: 10.1038/s41429-022-00588-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The crude extract of the Arctic fungus Phoma muscivora CPCC 401424 displayed anti-influenza A virus activities which led us to investigated their secondary metabolites. Four new chromone derivatives, phomarcticones A-D (1-4) and five known chromone analogs (5-9) have been isolated from Arctic fungus Phoma muscivora CPCC 401424. Compounds 3 and 4 possess rare sulfoxide groups in chromone derivatives. Their structures and absolute configurations were elucidated by extensive analysis of spectroscopic data, electronic circular dichroism, and comparison with reported data. Compounds 3, 7, and 9 showed significant anti-influenza A virus activities with the IC50 values of 24.4, 4.2, and 2.7 μM, respectively.
Collapse
Affiliation(s)
- Yan Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Pharmacy, Yantai University, Yantai, China
| | - Guowei Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengjun Dai
- School of Pharmacy, Yantai University, Yantai, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Cao L, Wu L, Li C, Tu Y, Wu H, Shen B, Meng J, Hao X, Yan B, Li F, Xia F, Huang Y. Underwater
Superoleophobic‐Oleophilic
Chips for Femtomolar Aflatoxins Identification. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liwei Cao
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Lizhen Wu
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Cheng Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Yidan Tu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Hao Wu
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Bin Shen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Jianxin Meng
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Xin‐Qi Hao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Bing Yan
- School of Environmental Studies China University of Geosciences Wuhan 430074 China
| | - Feng‐yu Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry China University of Geosciences Wuhan 430074 China
- Zhejiang Institute China University of Geosciences Hangzhou 311305 China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry China University of Geosciences Wuhan 430074 China
- Zhejiang Institute China University of Geosciences Hangzhou 311305 China
| |
Collapse
|
7
|
De BC, Zhang W, Zhang G, Liu Z, Tan B, Zhang Q, Zhang L, Zhang H, Zhu Y, Zhang C. Host-dependent heterologous expression of berninamycin gene cluster leads to linear thiopeptide antibiotics. Org Biomol Chem 2021; 19:8940-8946. [PMID: 34617948 DOI: 10.1039/d1ob01759d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Berninamycins are a class of thiopeptide antibiotics with potent activity against Gram-positive bacteria. Heterologous expression of the berninamycin (ber) biosynthetic gene cluster from marine-derived Streptomyces sp. SCSIO 11878 in different terrestrial model Streptomyces hosts led to the production of berninamycins A (1) and B (2) in Streptomyces lividans SBT18 and Streptomyces coelicolor M1154, while two new linearized berninamycins J (3) and K (4) were obtained in Streptomyces albus J1074. Their structures were elucidated by detailed interpretation of NMR data and Marfey's method. Bioactivity assays showed that the linear thiopeptides 3 and 4 were less potent than 1 and 2 in antibacterial activity. This work indicates that undefined host-dependent enzymes might be responsible for generating the linear thiopeptides 3 and 4 in S. albus J1074.
Collapse
Affiliation(s)
- Bidhan Chandra De
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| |
Collapse
|