1
|
Li H, Cheng W, Lv J, Wang C. Synthesis of 4-Hydroxyindolin-2-ones via Phosphoric Acid-Mediated Annulation of β-Nitrostyrenes with 1,3-Cyclohexanedione. J Org Chem 2024; 89:17789-17793. [PMID: 39531611 DOI: 10.1021/acs.joc.4c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The efficient synthesis of 4-hydroxy-3-arylindolin-2-ones via phosphoric acid-mediated annulation of various β-nitrostyrenes and 1,3-cyclohexanedione is described. This annulation reaction gives a practical method for affording a diverse set of oxindoles, having simple experimentation, readily available starting materials, and very good yields. Additionally, substituted 1,3-cyclohexanediones under the same conditions afforded tetrahydrobenzofuran oxime compounds.
Collapse
Affiliation(s)
- Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Wenzhe Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Jiaman Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
2
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
3
|
Ahmad T, Khan S, Ullah N. Recent Advances in the Catalytic Asymmetric Friedel-Crafts Reactions of Indoles. ACS OMEGA 2022; 7:35446-35485. [PMID: 36249392 PMCID: PMC9558610 DOI: 10.1021/acsomega.2c05022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Functionalized chiral indole derivatives are privileged and versatile organic frameworks encountered in numerous pharmaceutically active agents and biologically active natural products. The catalytic asymmetric Friedel-Crafts reaction of indoles, catalyzed by chiral metal complexes or chiral organocatalysts, is one of the most powerful and atom-economical approaches to access optically active indole derivatives. Consequently, a wide range of electrophilic partners including α,β-unsaturated ketones, esters, amides, imines, β,γ-unsaturated α-keto- and α-ketiminoesters, ketimines, nitroalkenes, and many others have been successfully employed to achieve a plethora of functionalized chiral indole moieties. In particular, strategies for C-H functionalization in the phenyl of indoles require incorporation of a directing or blocking group in the phenyl or azole ring of indole. The discovery of chiral catalysts which can control enantiodiscrimination has gained a great deal of attention in recent years. This review will provide an updated account on the application of the asymmetric Friedel-Crafts reaction of indoles in the synthesis of diverse chiral indole derivatives, covering the timeframe from 2011 to today.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
- The
Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Li N, Lu W, Gu W, Li K, Li J, Lu Y, Zha Z, Wang Z. Construction of spirocyclic oxindole derivatives by copper-catalyzed enantioselective Michael/hemiketalization in aqueous media. Chem Commun (Camb) 2022; 58:10957-10960. [PMID: 36082792 DOI: 10.1039/d2cc04370j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric Michael/hemiketalization reaction between isatin-derived β,γ-unsaturated α-ketoesters and 4-hydroxycoumarins was developed in aqueous media. A series of chiral spirooxindole derivatives with an all-carbon quaternary stereogenic center were obtained in high yields (up to 93%) and excellent enantioselectivities (up to 98%).
Collapse
Affiliation(s)
- Ning Li
- Hefei National Research center for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Wenjing Lu
- Hefei National Research center for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Weizhi Gu
- Hefei National Research center for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Kuiliang Li
- Hefei National Research center for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Jindong Li
- Hefei National Research center for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yangmian Lu
- Hefei National Research center for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Zhenggen Zha
- Hefei National Research center for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Zhiyong Wang
- Hefei National Research center for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
5
|
Wang J, Li C, Xu T, Li M, Hao W, Tu S, Wang J, Li G, Yu Z, Jiang B. Catalytic Enantioselective Construction of 6‐4
Ring‐Junction All‐Carbon
Stereocenters and Its Mechanistic Insights. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia‐Yin Wang
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Chen‐Long Li
- College of Chemistry, Peking University Beijing 100871 P. R. China
| | - Ting Xu
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Meng‐Fan Li
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Wen‐Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Shu‐Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Jianyi Wang
- Medical College, Guangxi University Nanning 530004 P. R. China
| | - Guigen Li
- Institute of Chemistry & Biomedical Sciences, Nanjing University Nanjing 210093 P. R. China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas 79409‐1061 United States
| | - Zhi‐Xiang Yu
- College of Chemistry, Peking University Beijing 100871 P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
6
|
Han YF, Lv GF, Li Y, Wu LJ, Ouyang XH, Li JH. Transient Chelating Group-Controlled Stereoselective Rh(I)-Catalyzed Silylative Aminocarbonylation of 2-Alkynylanilines: Entry to (Z)-3-(Silylmethylene)indolin-2-ones. Chem Sci 2022; 13:9425-9431. [PMID: 36092994 PMCID: PMC9383873 DOI: 10.1039/d2sc03009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
A new, mild acryl transient chelating group-controlled stereoselective Rh(I)-catalyzed silylative aminocarbonylation of 2-alkynylanilines with CO and silanes for producing (Z)-3-(silylmethylene)indolin-2-ones is presented. By using an acryl transient chelating group 2-alkynylanilines...
Collapse
Affiliation(s)
- Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology Changsha 410004 China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
7
|
Wu X, Zhao F, Ji X, Huang H. Visible Light-Assisted Photocatalyst-Free Tandem Sulfonylation/ Cyclization for the Synthesis of Oxindoles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|