1
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
2
|
Golagani D, Prakash KK, Thapa S, Sai Naik MB, Akondi SM. Visible-Light-Promoted Iron(II)/Lewis Base Catalysis for the Alkylation of Morita-Baylis-Hillman Acetates Using Carboxylic Acids. Org Lett 2024; 26:8583-8588. [PMID: 39352938 DOI: 10.1021/acs.orglett.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A novel photoinduced Fe(OTf)2/2,4,6-collidine-catalyzed alkylation of Morita-Baylis-Hillman (MBH) acetates using carboxylic acids in a regio- and stereoselective manner is reported. This method demonstrates a broad scope, encompassing various carboxylic acids and MBH acetates, including drugs and bioactive molecules, to synthesize densely functionalized cinnamates and acrylates. The reactions are performed in the green solvent dimethyl carbonate under oxidant-free conditions. Based on control experiments, a plausible mechanism involving an Fe(II)-Fe(III)-Fe(II) cycle is proposed.
Collapse
Affiliation(s)
- Durga Golagani
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kota Krishna Prakash
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Satyam Thapa
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Mudavath Bhargav Sai Naik
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Semeniuk T, Dudas T, Okeh E, Felesky T, Hamel JD. Photocatalytic Defluorinative α-Aminoalkylation of Allylic Difluorides. J Org Chem 2024; 89:13669-13677. [PMID: 39232656 DOI: 10.1021/acs.joc.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A photocatalytic process was devised to synthesize monofluoroalkenes via defluorinative functionalization of allylic difluorides. N-Alkylanilines are used as precursors to α-aminoalkyl radicals, which undergo regioselective addition to allylic difluorides, and subsequent SET and fluoride elimination produce monofluoroalkenes. C-C bond formation on the aniline is site-selective for the least substituted carbon α to nitrogen.
Collapse
Affiliation(s)
- Taylor Semeniuk
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Ty Dudas
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Esther Okeh
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Tanner Felesky
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Jean-Denys Hamel
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Liu Y, Zhou X, Li R, Sun Z. Photocatalytic Synthesis of γ,γ-Difluoroallylic Ketones and δ,δ-Difluoroallylic Ketones via a Desulfurative/Defluorinative Alkylation Process. Org Lett 2024; 26:6424-6427. [PMID: 39041637 DOI: 10.1021/acs.orglett.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The gem-difluoroalkene moiety is frequently found in medicinal chemistry. From α-keton sulfides and thioic acids, we were able to develop a universal approach for the synthesis of γ,γ-difluoroallylic ketones and δ,δ-difluoroallylic ketones via a desulfurative/defluorinative alkylation process. We expect that this mild and efficient method will be complementary to other known strategies.
Collapse
Affiliation(s)
- Yunqi Liu
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Xiyan Zhou
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Ruining Li
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Zhankui Sun
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Zhang Y, Zhu T, Lin Y, Wei X, Xie X, Lin R, Zhang Z, Fang W, Zhang JJ, Zhang Y, Hu MY, Cai L, Chen Z. Organo-photoredox catalyzed gem-difluoroallylation of ketone-derived dihydroquinazolinones via C(sp 3)-C bond and C(sp 3)-F bond cleavage. Org Biomol Chem 2024; 22:5561-5568. [PMID: 38916128 DOI: 10.1039/d4ob00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of both acyclic and cyclic ketone derivatives with α-trifluoromethyl alkenes has been demonstrated, thus giving access to a diverse set of gem-difluoroalkenes in moderate to high yields. Pro-aromatic dihydroquinazolinones can be either pre-formed or in situ generated for ketone activation. This reaction is characterized by readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this reaction has been highlighted by the late-stage modification of several natural products and drug-like molecules as well as the in vitro antifungal activity.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yue Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China.
| | - Meng-Yang Hu
- DreamChem (Tianjin) Co., Ltd., No. 4, Haitai Development 2nd Road, Binhai High-tech Zone, Tianjin, 300380, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
6
|
Ren M, Yu S, Li X, Yuan W, Lu J, Xiong Y, Liu H, Wang J, Wei J. Synthesis of gem-Difluorohomoallyl Amines via a Transition-Metal-Free Defluorinative Alkylation of Benzyl Amines with Trifluoromethyl Alkenes. J Org Chem 2024; 89:8342-8356. [PMID: 38819657 DOI: 10.1021/acs.joc.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A mild and transition-metal-free defluorinative alkylation of benzyl amines with trifluoromethyl alkenes is reported. The features of this protocol are easy-to-obtain starting materials, a wide range of substrates, and functional group tolerance as well as high atom economy, thus offering a strategy to access a variety of gem-difluorohomoallyl amines, which are extensively distributed in pharmaceuticals and bioactive agents, with excellent chemoselectivity. The primary products can be further transformed to a diversity of 2-fluorinated pyrroline compounds.
Collapse
Affiliation(s)
- Man Ren
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengjiao Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuefeng Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenlong Yuan
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Xiong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongliang Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 265500, China
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
7
|
Joseph E, Brar DS, Stuhlsatz G, Tunge JA. Transition metal-free decarboxylative olefination of carboxylic acid salts. Chem Sci 2024; 15:9353-9360. [PMID: 38903232 PMCID: PMC11186341 DOI: 10.1039/d4sc01905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
The cost-effective and efficient synthesis of alkenes is highly significant due to their extensive applications in both synthetic and polymer industries. A transition metal-free approach has been devised for the chemoselective olefination of carboxylic acid salts. This modular approach provides direct access to valuable electron-deficient styrenes in moderate to good yields. Detailed mechanistic studies suggest anionic decarboxylation is followed by halogen ion transfer. This halogen transfer leads to an umpolung of reactant electronics, allowing for a rate-limiting rebound elimination.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Deshkanwar S Brar
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Gaven Stuhlsatz
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| |
Collapse
|
8
|
He SL, Bao YS, Hu J, Bai C, Liu D. Selective and controllable amination and defluoroamidation of α-trifluoromethylstyrene. Org Biomol Chem 2023; 21:8658-8662. [PMID: 37878244 DOI: 10.1039/d3ob01595e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We present a blueprint for the amination and defluoroamidation of α-trifluoromethylstyrene. This practical protocol presents a general method for the diversity-oriented synthesis of vicinal trifluoromethyl amines and gem-difluoro alkenes from α-trifluoromethylstyrene maintaining excellent chemoselectivity. The synthetic strategy features outstanding atom economy and wide functional group tolerance under mild reaction conditions.
Collapse
Affiliation(s)
- Shuang-Lian He
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Juan Hu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| |
Collapse
|
9
|
Ni YQ, Li DJ, Mei Y, Jiang Y, Zhang JL, He KH, Pan F. Base-Mediated α- gem-Difluoroalkenylations of Aldehydes and Ketones. Org Lett 2023; 25:6784-6789. [PMID: 37672351 DOI: 10.1021/acs.orglett.3c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we present a base-mediated nucleophilic substitution reaction of α-trifluoromethylstyrenes with simple silyl enol ethers, enabling the efficient synthesis of carbonyl-substituted gem-difluoroalkenes. The merit of this protocol is exhibited by its mild reaction conditions, broad substrate scope, and scalable preparation. Notably, this method demonstrates its applicability for late-stage functionalization of structurally complex molecules. Moreover, we illustrate that the resulting products can serve as valuable precursors for the synthesis of diverse medicinally relevant compounds.
Collapse
Affiliation(s)
- Yu-Qing Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Dong-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Mei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jun-Lei Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Ke-Han He
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
10
|
Zhang G, Wang L, Cui L, Gao P, Chen F. Deaminative defluoroalkylation of α-trifluoromethylalkenes enabled by photoredox catalysis. Org Biomol Chem 2023; 21:294-299. [PMID: 36510767 DOI: 10.1039/d2ob02114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we disclose a new photoredox-catalysed strategy to access gem-difluoroallylarenes from α-trifluoromethylalkenes with sterically hindered primary amines via C-N and C-F bond activation. This deaminative and defluorinative allylation is generally compatible with diverse functional groups and sterically hindered α-3° and 2° primary amines.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Liping Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
11
|
Li N, Wang Y, Gu S, Hu C, Yang Q, Jin Z, Ouyang WT, Qiao J, He WM. Visible-light-initiated external photocatalyst-free synthesis of α,α-difluoro-β-ketoamides from 4-aminocoumarins. Org Biomol Chem 2023; 21:370-374. [PMID: 36515252 DOI: 10.1039/d2ob01914k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A concise and efficient ring-opening difluorination strategy was developed for the synthesis of highly functionalized hydroxy-containing α,α-difluoro-β-ketoamides from the one-pot multicomponent reaction of 4-aminocoumarins, NFSI, and water in dimethyl carbonate (DMC) as a green solvent. The reactions were smoothly achieved under visible light irradiation in air at room temperature without the addition of any other external photocatalysts. With this protocol, various α,α-difluoro-β-ketoamides were successfully synthesized under mild conditions (25 examples, 73-91% yields). This transition-metal-free synthetic procedure shows good functional group compatibility and attractive practical potential for large-scale synthesis.
Collapse
Affiliation(s)
- Ningbo Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Gu
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Chuqian Hu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qian Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhaohui Jin
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| | - Jie Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
12
|
Song S, Xu S. Recent Progress in Selective C-F Bond Activation of Trifluoromethyl Alkenes. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
13
|
Yue F, Ma H, Song H, Liu Y, Dong J, Wang Q. Alkylboronic acids as alkylating agents: photoredox-catalyzed alkylation reactions assisted by K 3PO 4. Chem Sci 2022; 13:13466-13474. [PMID: 36507180 PMCID: PMC9683010 DOI: 10.1039/d2sc05521j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the ubiquity of alkylboronic acids in organic synthesis, their utility as alkyl radical precursors in visible-light-induced photocatalytic reactions is limited by their high oxidation potentials. In this study, we demonstrated that an inorganophosphorus compound can modulate the oxidation potentials of alkylboronic acids so that they can act as alkyl radical precursors. We propose a mechanism based on the results of fluorescence quenching experiments, electrochemical experiments, 11B and 31P NMR spectroscopy, and other techniques. In addition, we describe a simple and reliable alkylation method that has good functional group tolerance and can be used for direct C-B chlorination, cyanation, vinylation, alkynylation, and allylation, as well as late-stage functionalization of derivatized drug molecules. Notably, alkylboronic acids can be selectively activated in the presence of a boronic pinacol ester.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Henan Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| |
Collapse
|
14
|
Ma T, Li X, Ping Y, Kong W. Synthesis of
gem
‐Difluoroalkenes
via
Ni‐Catalyzed Three‐Component
Defluorinative Reductive
Cross‐Coupling
of Organohalides, Alkenes and Trifluoromethyl Alkenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Teng Ma
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Xiao Li
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| |
Collapse
|
15
|
Wang Q, Yue L, Bao Y, Wang Y, Kang D, Gao Y, Yuan Z. Oxalates as Activating Groups for Tertiary Alcohols in Photoredox-Catalyzed gem-Difluoroallylation To Construct All-Carbon Quaternary Centers. J Org Chem 2022; 87:8237-8247. [PMID: 35612278 DOI: 10.1021/acs.joc.2c00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Construction of challenging and important all-carbon quaternary centers has received growing attention. Herein, with oxalates as activating groups for tertiary alcohols, we report photoredox-catalyzed gem-difluoroallylation to construct all-carbon quaternary centers enabled by efficient tertiary radical addition to α-trifluoromethyl alkenes. This transformation shows good functional group tolerance for both α-trifluoromethyl alkenes and oxalates. Moreover, this strategy is also successfully applied to the synthesis of monofluoralkenes from the corresponding electron-rich gem-difluoroalkenes and cesium tertiary alkyl oxalates under modified conditions.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ling Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Danni Kang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
16
|
Synthesis of mono‐Fluoroallenes through Copper‐Catalyzed Defluorinative Silylation of α,α‐Difluoroalkylalkynes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
|
18
|
Wang JX, Ge W, Fu MC, Fu Y. Photoredox-Catalyzed Allylic Defluorinative Alkoxycarbonylation of Trifluoromethyl Alkenes through Intermolecular Alkoxycarbonyl Radical Addition. Org Lett 2022; 24:1471-1475. [PMID: 35167309 DOI: 10.1021/acs.orglett.1c04359] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The gem-difluoroalkene moiety is an ideal carbonyl bioisostere in medicinal chemistry, but efficient synthesis of β-gem-difluoroalkene esters remains challenging so far. Herein, we disclose a photoredox-catalyzed allylic defluorinative alkoxycarbonylation of trifluoromethyl alkenes enabled by intermolecular alkoxycarbonyl radical addition. A wide variety of alcohol oxalate derivatives were amenable, affording various β-gem-difluoroalkene esters with excellent functional group tolerance. Notably, the potential synthetic value of this method is highlighted by successful late-stage modification for bioactive molecules.
Collapse
Affiliation(s)
- Jia-Xin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Wei Ge
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Chen Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Guan YQ, Wang TZ, Qiao JF, Chen Z, Bai Z, Liang YF. Iron-catalysed reductive coupling for the synthesis of polyfluorinated compounds. Chem Commun (Camb) 2022; 58:13915-13918. [DOI: 10.1039/d2cc06022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Iron-catalysed reductive cross-coupling of difluorobromo acetic acid derivatives with trifluoromethyl olefins to afford polyfluorinated molecules, containing a difluorenyl and difluoroalkyl group, with a broad substrate scope.
Collapse
Affiliation(s)
- Yu-Qiu Guan
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhushuang Bai
- School of Pharmacy and Pharmaceutical Science & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|