1
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
2
|
Zhao M, Wang L, Wang X, He J, Yu K, Li D. Non-neoplastic cells as prognostic biomarkers in diffuse large B-cell lymphoma: A system review and meta-analysis. TUMORI JOURNAL 2024; 110:227-240. [PMID: 38183180 DOI: 10.1177/03008916231221636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The microenvironment of diffuse large B-cell lymphoma (DLBCL) is composed of various components, including immune cells and immune checkpoints, some of which have been correlated with the prognosis of DLBCL, but their results remain controversial. Therefore, we conducted a systematic review and meta-analysis to investigate the association between the microenvironment and prognosis in DLBCL. We searched PubMed, Web of Science, and EMBASE for relevant articles between 2001 and 2022. Twenty-five studies involving 4495 patients with DLBCL were included in the analysis. This meta-analysis confirmed that high densities of Foxp3+Tregs and PD-1+T cells are good indicators for overall survival (OS) in DLBCL, while high densities of programmed cell death protein ligand1(PD-L1)-positive expression cells and T-cell immunoglobulin-and mucin domain-3-containing molecule 3 (TIM-3)-positive expression tumor-infiltrating cells (TILs) play a contrary role in OS. Additionally, higher numbers of T-cell intracytoplasmic antigen-1(TIA-1)-positive expression T cells imply better OS and progression-free survival (PFS), while high numbers of lymphocyte activation gene(LAG)-positive expression TILs predict bad OS and PFS. Various non-tumoral cells in the microenvironment play important roles in the prognosis of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Prognosis
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| | - Lixing Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Kuai Yu
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
- Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
4
|
Rupp L, Dietsche I, Kießler M, Sommer U, Muckenhuber A, Steiger K, van Eijck CWF, Richter L, Istvanffy R, Jäger C, Friess H, van Eijck CHJ, Demir IE, Reyes CM, Schmitz M. Neoadjuvant chemotherapy is associated with suppression of the B cell-centered immune landscape in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1378190. [PMID: 38629072 PMCID: PMC11018975 DOI: 10.3389/fimmu.2024.1378190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at advanced stages and associated with early distant metastasis and poor survival. Besides clinical factors, the tumor microenvironment (TME) emerged as a crucial determinant of patient survival and therapy response in many tumors, including PDAC. Thus, the presence of tumor-infiltrating lymphocytes and the formation of tertiary lymphoid structures (TLS) is associated with longer survival in PDAC. Although neoadjuvant therapy (NeoTx) has improved the management of locally advanced tumors, detailed insight into its effect on various TME components is limited. While a remodeling towards a proinflammatory state was reported for PDAC-infiltrating T cells, the effect of NeoTx on B cell subsets, including plasma cells, and TLS formation is widely unclear. We thus investigated the frequency, composition, and spatial distribution of PDAC-infiltrating B cells in primary resected (PR) versus neoadjuvant-treated patients using a novel multiplex immunohistochemistry panel. The NeoTx group displayed significantly lower frequencies of pan B cells, GC B cells, plasmablasts, and plasma cells, accompanied by a reduced abundance of TLS. This finding was supported by bulk RNA-sequencing analysis of an independent fresh frozen tissue cohort, which revealed that major B cell pathways were downregulated in the NeoTx group. We further observed that plasma cells frequently formed aggregates that localized close to TLS and that TLS+ patients displayed significantly higher plasma cell frequencies compared to TLS- patients in the PR group. Additionally, high densities of CD20+ intratumoral B cells were significantly associated with longer overall survival in the PR group. While CD20+ B cells held no prognostic value for NeoTx patients, an increased frequency of proliferating CD20+Ki67+ B cells emerged as an independent prognostic factor for longer survival in the NeoTx group. These results indicate that NeoTx differentially affects PDAC-infiltrating immune cells and may have detrimental effects on the existing B cell landscape and the formation of TLS. Gaining further insight into the underlying molecular mechanisms is crucial to overcome the intrinsic immunotherapy resistance of PDAC and develop novel strategies to improve the long-term outcome of PDAC patients.
Collapse
Affiliation(s)
- Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Ina Dietsche
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Maximilian Kießler
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Ulrich Sommer
- Institute of Pathology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Alexander Muckenhuber
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Casper W. F. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Leonard Richter
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of General Surgery, Hepato-Pancreato-Biliary (HPB) Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Technical University of Munich, Munich, Germany
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Protsepko O, Voisard P, Kuhn C, Maccagno A, Dannecker C, Jeschke U, Pauli F, Garrido F. Induction of a different immune response in non-titanized compared to titanized polypropylene meshes. Acta Biomater 2023; 169:363-371. [PMID: 37579913 DOI: 10.1016/j.actbio.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
It is well known that pelvic organ prolapse (POP) significantly reduces the quality of life of affected women and in many cases requires corrective surgery. Aim of the study was to compare the immune response against titanized versus non-titanized meshes, especially macrophage polarization and immune checkpoint association. For this, we analyzed 644 POP surgeries, which were performed between 2017 and 2022, in our department. Four of them needed revision surgery caused by erosion. We analyzed the influx of CD68 & CD163 positive macrophages and the expression of immune checkpoint molecules PD-L1 and PD1 in these 4 patients. We identified a large number of CD68 and CD163 positive macrophages and additionally a PD-L1 expression of these cells. Based on the in-vivo results, we isolated monocytes and co-cultivated monocytes with different mesh material covered with or without fibroblasts. We identified a significantly enhanced macrophage activation and PD-L1 expression in macrophages surrounding non-titanized polypropylene mesh material. Encapsulation of the material by fibroblasts was crucial for that. Specifically, CD68-positive macrophages are upregulated (p < 0.001), co-expressing PD-L1 (p < 0.001) in monocytes co-cultivated with non-titanized polypropylene meshes. Monocytes co-cultivated with titanized polypropylene meshes showed significantly lower expression of CD163 (p = 0.027) and PD-L1 (p = 0.022). In conclusion, our in vitro data suggest that the titanium coating leads to a decreased polarization of macrophages and to a decreased immune response compared to non-titanized meshes. This could be an indication for the increased incidence of erosion of the non-titanized meshes, which is a severe complication of this procedure and requires revision surgery. STATEMENT OF SIGNIFICANCE: Pelvic organ prolapse is a well-known problem for women and often requires corrective surgery. Polypropylene meshes are often used, which differ in their coating (titanized vs. non-titanized). A severe side effect of these surgeries is mesh erosion, due to onset of inflammation, which requires revision surgery. We examined all erosion cases (4 of 644 patients) with implanted nontitanium-coated meshes by immunohistochemistry and found upregulation of macrophage polarization (as markers CD68 and CD163) and increased expression of the immune checkpoint molecules PD-L1 and PD1. This suggests inflammatory processes and an enhanced immune response. In addition, we set up an in vitro experiment to investigate whether coating plays a role. Here, we demonstrated that the non-titanized meshes elicited a significantly higher immune response in comparison to titanized meshes, which could lead to the higher erosion rate of the non-titanized meshes. Our results highlight the benefit of titanized meshes, which should lead to a lower revision surgery rate and thus improved patient outcome.
Collapse
Affiliation(s)
- Oleksii Protsepko
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Philipp Voisard
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Andrea Maccagno
- Department of Pathology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany.
| | - Friedrich Pauli
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Fabian Garrido
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| |
Collapse
|
6
|
Cedres S, Serna G, Gonzalez-Medina A, Valdivia A, Assaf-Pastrana JD, Iranzo P, Callejo A, Pardo N, Navarro A, Martinez-Marti A, Priano I, Fasani R, Guardia X, Gonzalo J, Carbonell C, Frigola J, Amat R, Navarro V, Dienstmann R, Vivancos A, Nuciforo P, Felip E. Expression of TILs and Patterns of Gene Expression from Paired Samples of Malignant Pleural Mesothelioma (MPM) Patients. Cancers (Basel) 2023; 15:3611. [PMID: 37509274 PMCID: PMC10377125 DOI: 10.3390/cancers15143611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
MPM is an aggressive disease with an immunosuppressive tumor microenvironment, and interest in exploring immunotherapy in this disease has been increasing. In the first line of treatment, the combination of nivolumab and ipilimumab demonstrated an improvement in survival over chemotherapy. The presence of TILs has been recognized as a marker of antitumor immune response to chemotherapy in solid tumors. The aim of our study is to identify the effect of treatment on immune cells and the immune gene profile in MPM. We investigated the changes in expression of TILs in 10 human MPM paired tumor tissues using immunohistochemistry and gene expression analysis from paired untreated and treated samples. In this small series, we demonstrated that during the evolution of disease without any treatment there was an increase in the inflammatory component in tumor samples. After systemic treatment there was a decrease in the number of TILs. We observed that after systemic treatment or disease progression immune gene signatures were suppressed. Our integrated analysis of paired samples with immune profile and genomic changes on MPM suggested that during the evolution of the disease the immune system tends to switch, turning off with treatment.
Collapse
Affiliation(s)
- Susana Cedres
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Garazi Serna
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Augusto Valdivia
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Juan David Assaf-Pastrana
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Patricia Iranzo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ana Callejo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Nuria Pardo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Alejandro Navarro
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Alex Martinez-Marti
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ilaria Priano
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Roberta Fasani
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Xavier Guardia
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Gonzalo
- Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Caterina Carbonell
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Joan Frigola
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ramon Amat
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Victor Navarro
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Lab, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Enriqueta Felip
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Laface C, Memeo R, Maselli FM, Santoro AN, Iaia ML, Ambrogio F, Laterza M, Cazzato G, Guarini C, De Santis P, Perrone M, Fedele P. Immunotherapy and Pancreatic Cancer: A Lost Challenge? Life (Basel) 2023; 13:1482. [PMID: 37511856 PMCID: PMC10381818 DOI: 10.3390/life13071482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Although immunotherapy has proved to be a very efficient therapeutic strategy for many types of tumors, the results for pancreatic cancer (PC) have been very poor. Indeed, chemotherapy remains the standard treatment for this tumor in the advanced stage. Clinical data showed that only a small portion of PC patients with high microsatellite instability/mismatch repair deficiency benefit from immunotherapy. However, the low prevalence of these alterations was not sufficient to lead to a practice change in the treatment strategy of this tumor. The main reasons for the poor efficacy of immunotherapy probably lie in the peculiar features of the pancreatic tumor microenvironment in comparison with other malignancies. In addition, the biomarkers usually evaluated to define immunotherapy efficacy in other cancers appear to be useless in PC. This review aims to describe the main features of the pancreatic tumor microenvironment from an immunological point of view and to summarize the current data on immunotherapy efficacy and immune biomarkers in PC.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | | | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
8
|
Stuhr LK, Madsen K, Johansen AZ, Chen IM, Hansen CP, Jensen LH, Hansen TF, Kløve-Mogensen K, Nielsen KR, Johansen JS. Combining sCD163 with CA 19-9 Increases the Predictiveness of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15030897. [PMID: 36765852 PMCID: PMC9913074 DOI: 10.3390/cancers15030897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the diagnostic and prognostic potential of soluble CD163 (sCD163) in patients with pancreatic ductal adenocarcinoma (PDAC). Preoperative serum samples from 255 patients with PDAC were analyzed for sCD163 using a commercially available enzyme-linked immunosorbent assay. The diagnostic value of sCD163 was evaluated using receiver operating characteristic (ROC) curves. The prognostic significance of sCD163 was evaluated by Cox regression analysis and Kaplan-Meier survival curves. sCD163 was significantly increased in patients with PDAC, across all stages, compared to healthy subjects (stage 1: p value = 0.033; stage 2-4: p value ≤ 0.0001). ROC curves showed that sCD163 combined with CA 19-9 had the highest diagnostic potential compared to sCD163 and CA 19-9 alone both in patients with local PDAC and patients with advanced PDAC. Univariate and multivariate analysis showed no association between sCD163 and overall survival. This study found elevated levels of circulating sCD163 in patients with PDAC, regardless of stage, compared to healthy subjects. This suggests that sCD163 may have a clinical value as a novel diagnostic biomarker in PDAC.
Collapse
Affiliation(s)
- Liva K. Stuhr
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Kasper Madsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital-Rigshospitalet, DK-2200 Copenhagen, Denmark
| | - Lars H. Jensen
- Department of Oncology, University Hospital of Southern Denmark, DK-7100 Vejle, Denmark
| | - Torben F. Hansen
- Department of Oncology, University Hospital of Southern Denmark, DK-7100 Vejle, Denmark
| | | | - Kaspar R. Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-38689241
| |
Collapse
|
9
|
The Tumor Immune Microenvironment in Pancreatic Ductal Adenocarcinoma: Neither Hot nor Cold. Cancers (Basel) 2022; 14:cancers14174236. [PMID: 36077772 PMCID: PMC9454892 DOI: 10.3390/cancers14174236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review, we discuss the current understanding of pro- and anticancer immune responses in the tumor immune microenvironment of pancreatic ductal adenocarcinoma. We describe the duality and complexity of immune cell functions in the tumor microenvironment and also illustrate therapeutic approaches that modulate the antitumor immune response. Abstract Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic tumor and is associated with poor prognosis and treatment response. The tumor microenvironment (TME) is recognized as an important factor in metastatic progression across cancers. Despite extensive study of the TME in PDAC, the cellular and molecular signaling networks remain poorly understood, largely due to the tremendous heterogeneity across tumors. While earlier work characterized PDAC as an immunologically privileged tumor poorly recognized by the immune system, recent studies revealed the important and nuanced roles of immune cells in the pathogenesis of PDAC. Distinct lymphoid, myeloid, and stromal cell types in the TME exert opposing influences on PDAC tumor trajectory, suggesting a more complex organization than the classical “hot” versus “cold” tumor distinction. We review the pro- and antitumor immune processes found in PDAC and briefly discuss their leverage for the development of novel therapeutic approaches in the field.
Collapse
|
10
|
Analysis and Validation of TMED3 correlates with poor prognosis and tumor immune infiltration of glioma. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04257-x. [PMID: 35951089 DOI: 10.1007/s00432-022-04257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Glioma is the most common primary intracranial tumor. It is notorious for its high degree of malignancy, strong invasion, and poor prognosis. The transmembrane emp24 trafficking protein 3 (TMED3) belongs to the TMED family, which is responsible for intracellular protein transport and innate immune signal transmission. More and more evidence shows that TMED3 plays a key role in the tumor progression of human cancer. However, the role and potential molecular mechanism of TMED3 in glioma have not been clarified. METHODS TMED3 expression levels, clinical data, survival prognosis, prediction of upstream miRNA, and immune-related analyses were all analyzed utilizing relevant databases. Finally, a molecular cell experiment confirmed TMED3 expression in glioma. RESULTS We discovered that TMED3 is overexpressed in most tumors, including gliomas, and is associated with tumor staging and prognosis. Subsequently, a combination of a series of bioinformatics analyses, including correlation and survival analyses, identified miR-1296-5p as the most potent upstream miRNA of TMED3 in gliomas.Additionally, we analyzed the relationship between TMED3 level and tumor immune cell infiltration and immune checkpoint expression. CONCLUSION TMED3 is highly expressed in gliomas and is associated with tumor staging and affects the prognosis of patients. Therefore, the TMED3 gene may be a potential immunotherapy target and prognostic marker for gliomas.
Collapse
|
11
|
Ai H, Li B, Meng F, Ai Y. CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways. Front Immunol 2022; 13:907646. [PMID: 35774781 PMCID: PMC9238352 DOI: 10.3389/fimmu.2022.907646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
Colon ascendens stent peritonitis (CASP) surgery induces a leakage of intestinal contents which may cause polymicrobial sepsis related to post-operative failure of remote multi-organs (including kidney, liver, lung and heart) and possible death from systemic syndromes. Mechanisms underlying such phenomena remain unclear. This article aims to elucidate the mechanisms underlying the CASP-model sepsis by analyzing real-world GEO data (GSE24327_A, B and C) generated from mice spleen 12 hours after a CASP-surgery in septic MyD88-deficient and wildtype mice, compared with untreated wildtype mice. Firstly, we identify and characterize 21 KO MyD88-associated signaling pathways, on which true key regulators (including ligands, receptors, adaptors, transducers, transcriptional factors and cytokines) are marked, which were coordinately, significantly, and differentially expressed at the systems-level, thus providing massive potential biomarkers that warrant experimental validations in the future. Secondly, we observe the full range of polymicrobial (viral, bacterial, and parasitic) sepsis triggered by the CASP-surgery by comparing the coordinated up- or down-regulations of true regulators among the experimental treatments born by the three data under study. Finally, we discuss the observed phenomena of “systemic syndrome”, “cytokine storm” and “KO MyD88 attenuation”, as well as the proposed hypothesis of “spleen-mediated immune-cell infiltration”. Together, our results provide novel insights into a better understanding of innate immune responses triggered by the CASP-model sepsis in both wildtype and MyD88-deficient mice at the systems-level in a broader vision. This may serve as a model for humans and ultimately guide formulating the research paradigms and composite strategies for the early diagnosis and prevention of sepsis.
Collapse
Affiliation(s)
- Hannan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- National Center for Quality Supervision and Inspection of Automatic Equipment, National Center for Testing and Evaluation of Robots (Guangzhou), CRAT, SINOMACH-IT, Guangzhou, China
- *Correspondence: Hannan Ai, ; Yuncan Ai,
| | - Bizhou Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fanmei Meng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuncan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunity & Immune-mediated Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hannan Ai, ; Yuncan Ai,
| |
Collapse
|
12
|
Di Federico A, Mosca M, Pagani R, Carloni R, Frega G, De Giglio A, Rizzo A, Ricci D, Tavolari S, Di Marco M, Palloni A, Brandi G. Immunotherapy in Pancreatic Cancer: Why Do We Keep Failing? A Focus on Tumor Immune Microenvironment, Predictive Biomarkers and Treatment Outcomes. Cancers (Basel) 2022; 14:cancers14102429. [PMID: 35626033 PMCID: PMC9139656 DOI: 10.3390/cancers14102429] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In pancreatic cancer, immunotherapy and targeted therapies have not brought about the therapeutic revolution that has been observed in other malignancies. Among the reasons to explain this difference is the possibly crucial role played by the pancreatic tumor microenvironment, which has unique features and is different from that of other neoplasms. The aim of this review is to provide a comprehensive overview of the distinctive tumor immune microenvironment of pancreatic cancer and to summarize existing data about the use of immunotherapy and immune biomarkers in this cancer. Abstract The advent of immunotherapy and targeted therapies has dramatically changed the outcomes of patients affected by many malignancies. Pancreatic cancer (PC) remains one the few tumors that is not treated with new generation therapies, as chemotherapy still represents the only effective therapeutic strategy in advanced-stage disease. Agents aiming to reactivate the host immune system against cancer cells, such as those targeting immune checkpoints, failed to demonstrate significant activity, despite the success of these treatments in other tumors. In many cases, the proportion of patients who derived benefits in early-phase trials was too small and unpredictable to justify larger studies. The population of PC patients with high microsatellite instability/mismatch repair deficiency is currently the only population that may benefit from immunotherapy; nevertheless, the prevalence of these alterations is too low to determine a real change in the treatment scenario of this tumor. The reasons for the unsuccess of immunotherapy may lie in the extremely peculiar tumor microenvironment, including distinctive immune composition and cross talk between different cells. These unique features may also explain why the biomarkers commonly used to predict immunotherapy efficacy in other tumors seem to be useless in PC. In the current paper, we provide a comprehensive and up-to-date review of immunotherapy in PC, from the analysis of the tumor immune microenvironment to immune biomarkers and treatment outcomes, with the aim to highlight that simply transferring the knowledge acquired on immunotherapy in other tumors might not be a successful strategy in patients affected by PC.
Collapse
Affiliation(s)
- Alessandro Di Federico
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy; (M.M.); (R.P.); (R.C.); (A.D.G.); (M.D.M.); (A.P.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
- Correspondence:
| | - Mirta Mosca
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy; (M.M.); (R.P.); (R.C.); (A.D.G.); (M.D.M.); (A.P.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
| | - Rachele Pagani
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy; (M.M.); (R.P.); (R.C.); (A.D.G.); (M.D.M.); (A.P.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
| | - Riccardo Carloni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy; (M.M.); (R.P.); (R.C.); (A.D.G.); (M.D.M.); (A.P.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
| | - Giorgio Frega
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Andrea De Giglio
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy; (M.M.); (R.P.); (R.C.); (A.D.G.); (M.D.M.); (A.P.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Dalia Ricci
- Departmental Unit of Medical Oncology, ASL BA, 20142 Milan, Italy;
| | - Simona Tavolari
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
| | - Mariacristina Di Marco
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy; (M.M.); (R.P.); (R.C.); (A.D.G.); (M.D.M.); (A.P.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
| | - Andrea Palloni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy; (M.M.); (R.P.); (R.C.); (A.D.G.); (M.D.M.); (A.P.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
| | - Giovanni Brandi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy; (M.M.); (R.P.); (R.C.); (A.D.G.); (M.D.M.); (A.P.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy;
| |
Collapse
|
13
|
Vellan CJ, Jayapalan JJ, Yoong BK, Abdul-Aziz A, Mat-Junit S, Subramanian P. Application of Proteomics in Pancreatic Ductal Adenocarcinoma Biomarker Investigations: A Review. Int J Mol Sci 2022; 23:2093. [PMID: 35216204 PMCID: PMC8879036 DOI: 10.3390/ijms23042093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly aggressive malignancy with a poor prognosis is usually detected at the advanced stage of the disease. The only US Food and Drug Administration-approved biomarker that is available for PDAC, CA 19-9, is most useful in monitoring treatment response among PDAC patients rather than for early detection. Moreover, when CA 19-9 is solely used for diagnostic purposes, it has only a recorded sensitivity of 79% and specificity of 82% in symptomatic individuals. Therefore, there is an urgent need to identify reliable biomarkers for diagnosis (specifically for the early diagnosis), ascertain prognosis as well as to monitor treatment response and tumour recurrence of PDAC. In recent years, proteomic technologies are growing exponentially at an accelerated rate for a wide range of applications in cancer research. In this review, we discussed the current status of biomarker research for PDAC using various proteomic technologies. This review will explore the potential perspective for understanding and identifying the unique alterations in protein expressions that could prove beneficial in discovering new robust biomarkers to detect PDAC at an early stage, ascertain prognosis of patients with the disease in addition to monitoring treatment response and tumour recurrence of patients.
Collapse
Affiliation(s)
- Christina Jane Vellan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
- University of Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon-Koon Yoong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Azlina Abdul-Aziz
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Sarni Mat-Junit
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India;
| |
Collapse
|
14
|
Yu J, Li Q, Zhang H, Meng Y, Liu YF, Jiang H, Ma C, Liu F, Fang X, Li J, Feng X, Shao C, Bian Y, Lu J. Contrast-enhanced computed tomography radiomics and multilayer perceptron network classifier: an approach for predicting CD20 + B cells in patients with pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 2022; 47:242-253. [PMID: 34708252 DOI: 10.1007/s00261-021-03285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To develop and validate a machine-learning classifier based on contrast-enhanced computed tomography (CT) for the preoperative prediction of CD20+ B lymphocyte expression in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Overall, 189 patients with PDAC (n = 132 and n = 57 in the training and validation sets, respectively) underwent immunohistochemistry and radiomics feature extraction. The X-tile software was used to stratify them into groups with 'high' and 'low' CD20+ B lymphocyte expression levels. For each patient, 1409 radiomic features were extracted from volumes of interest and reduced using variance analysis and Spearman correlation analysis. A multilayer perceptron (MLP) network classifier was developed using the training and validation set. Model performance was determined by its discriminative ability, calibration, and clinical utility. RESULTS A log-rank test showed that the patients with high CD20+ B expression had significantly longer survival than those with low CD20+ B expression. The prediction model showed good discrimination in both the training and validation sets. For the training set, the area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 0.82 (95% CI 0.74-0.89), 92.42%, 57.58%, 0.75, 0.69, and 0.88, respectively; whereas these values for the validation set were 0.84 (95% CI 0.72-0.93), 86.21%, 78.57%, 0.83, 0.81, and 0.85, respectively. CONCLUSION The MLP network classifier based on contrast-enhanced CT can accurately predict CD20+ B expression in patients with PDAC.
Collapse
Affiliation(s)
- Jieyu Yu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Qi Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Hao Zhang
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yinghao Meng
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yan Fang Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Fang Liu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Xu Fang
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jing Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Xiaochen Feng
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| |
Collapse
|
15
|
Ge P, Luo Y, Chen H, Liu J, Guo H, Xu C, Qu J, Zhang G, Chen H. Application of Mass Spectrometry in Pancreatic Cancer Translational Research. Front Oncol 2021; 11:667427. [PMID: 34707986 PMCID: PMC8544753 DOI: 10.3389/fonc.2021.667427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in the digestive tract worldwide, with increased morbidity and mortality. In recent years, with the development of surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and the change of the medical thinking model, remarkable progress has been made in researching comprehensive diagnosis and treatment of PC. However, the present situation of diagnostic and treatment of PC is still unsatisfactory. There is an urgent need for academia to fully integrate the basic research and clinical data from PC to form a research model conducive to clinical translation and promote the proper treatment of PC. This paper summarized the translation progress of mass spectrometry (MS) in the pathogenesis, diagnosis, prognosis, and PC treatment to promote the basic research results of PC into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jialin Qu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Feng Z, Qian H, Li K, Lou J, Wu Y, Peng C. Development and Validation of a 7-Gene Prognostic Signature to Improve Survival Prediction in Pancreatic Ductal Adenocarcinoma. Front Mol Biosci 2021; 8:676291. [PMID: 34095229 PMCID: PMC8176016 DOI: 10.3389/fmolb.2021.676291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Previous prognostic signatures of pancreatic ductal adenocarcinoma (PDAC) are mainly constructed to predict the overall survival (OS), and their predictive accuracy needs to be improved. Gene signatures that efficaciously predict both OS and disease-free survival (DFS) are of great clinical significance but are rarely reported. Methods: Univariate Cox regression analysis was adopted to screen common genes that were significantly associated with both OS and DFS in three independent cohorts. Multivariate Cox regression analysis was subsequently performed on the identified genes to determine an optimal gene signature in the MTAB-6134 training cohort. The Kaplan-Meier (K-M), calibration, and receiver operating characteristic (ROC) curves were employed to assess the predictive accuracy. Biological process and pathway enrichment analyses were conducted to elucidate the biological role of this signature. Results: Multivariate Cox regression analysis determined a 7-gene signature that contained ASPH, DDX10, NR0B2, BLOC1S3, FAM83A, SLAMF6, and PPM1H. The signature had the ability to stratify PDAC patients with different OS and DFS, both in the training and validation cohorts. ROC curves confirmed the moderate predictive accuracy of this signature. Mechanically, the signature was related to multiple cancer-related pathways. Conclusion: A novel OS and DFS prediction model was constructed in PDAC with multi-cohort and cross-platform compatibility. This signature might foster individualized therapy and appropriate management of PDAC patients.
Collapse
Affiliation(s)
- Zengyu Feng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Qian
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexian Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulian Wu
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|