1
|
Frei AL, McGuigan A, Sinha RRAK, Jabbar F, Gneo L, Tomasevic T, Harkin A, Iveson T, Saunders MP, Oien KA, Maka N, Pezzella F, Campo L, Browne M, Glaire M, Kildal W, Danielsen HE, Hay J, Edwards J, Sansom O, Kelly C, Tomlinson I, Kerr R, Kerr D, Domingo E, Church DN, Koelzer VH. Multiplex analysis of intratumoural immune infiltrate and prognosis in patients with stage II-III colorectal cancer from the SCOT and QUASAR 2 trials: a retrospective analysis. Lancet Oncol 2024; 25:198-211. [PMID: 38301689 DOI: 10.1016/s1470-2045(23)00560-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Tumour-infiltrating CD8+ cytotoxic T cells confer favourable prognosis in colorectal cancer. The added prognostic value of other infiltrating immune cells is unclear and so we sought to investigate their prognostic value in two large clinical trial cohorts. METHODS We used multiplex immunofluorescent staining of tissue microarrays to assess the densities of CD8+, CD20+, FoxP3+, and CD68+ cells in the intraepithelial and intrastromal compartments from tumour samples of patients with stage II-III colorectal cancer from the SCOT trial (ISRCTN59757862), which examined 3 months versus 6 months of adjuvant oxaliplatin-based chemotherapy, and from the QUASAR 2 trial (ISRCTN45133151), which compared adjuvant capecitabine with or without bevacizumab. Both trials included patients aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0-1. Immune marker predictors were analysed by multiple regression, and the prognostic and predictive values of markers for colorectal cancer recurrence-free interval by Cox regression were assessed using the SCOT cohort for discovery and QUASAR 2 cohort for validation. FINDINGS After exclusion of cases without tissue microarrays and with technical failures, and following quality control, we included 2340 cases from the SCOT trial and 1069 from the QUASAR 2 trial in our analysis. Univariable analysis of associations with recurrence-free interval in cases from the SCOT trial showed a strong prognostic value of intraepithelial CD8 (CD8IE) as a continuous variable (hazard ratio [HR] for 75th vs 25th percentile [75vs25] 0·73 [95% CI 0·68-0·79], p=2·5 × 10-16), and of intrastromal FoxP3 (FoxP3IS; 0·71 [0·64-0·78], p=1·5 × 10-13) but not as strongly in the epithelium (FoxP3IE; 0·89 [0·84-0·96], p=1·5 × 10-4). Associations of other markers with recurrence-free interval were moderate. CD8IE and FoxP3IS retained independent prognostic value in bivariable and multivariable analysis, and, compared with either marker alone, a composite marker including both markers (CD8IE-FoxP3IS) was superior when assessed as a continuous variable (adjusted [a]HR75 vs 25 0·70 [95% CI 0·63-0·78], p=5·1 × 10-11) and when categorised into low, intermediate, and high density groups using previously published cutpoints (aHR for intermediate vs high 1·68 [95% CI 1·29-2·20], p=1·3 × 10-4; low vs high 2·58 [1·91-3·49], p=7·9 × 10-10), with performance similar to the gold-standard Immunoscore. The prognostic value of CD8IE-FoxP3IS was confirmed in cases from the QUASAR 2 trial, both as a continuous variable (aHR75 vs 25 0·84 [95% CI 0·73-0·96], p=0·012) and as a categorical variable for low versus high density (aHR 1·80 [95% CI 1·17-2·75], p=0·0071) but not for intermediate versus high (1·30 [0·89-1·88], p=0·17). INTERPRETATION Combined evaluation of CD8IE and FoxP3IS could help to refine risk stratification in colorectal cancer. Investigation of FoxP3IS cells as an immunotherapy target in colorectal cancer might be merited. FUNDING Medical Research Council, National Institute for Health Research, Cancer Research UK, Swedish Cancer Society, Roche, and Promedica Foundation.
Collapse
Affiliation(s)
- Anja L Frei
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Life Science Zurich Graduate School, PhD Program in Biomedicine, University of Zurich, Zurich, Switzerland
| | - Anthony McGuigan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ritik R A K Sinha
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Faiz Jabbar
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luciana Gneo
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tijana Tomasevic
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Harkin
- Cancer Research UK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, UK
| | | | | | - Karin A Oien
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Noori Maka
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Francesco Pezzella
- Nuffield Division of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford, UK
| | - Molly Browne
- Department of Oncology, University of Oxford, Oxford, UK
| | - Mark Glaire
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Havard E Danielsen
- Nuffield Division of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Jennifer Hay
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Owen Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; Cancer Research UK Beatson Institute of Cancer Research, Glasgow, UK; Cancer Research UK Scotland Centre, Glasgow and Edinburgh, UK
| | - Caroline Kelly
- Cancer Research UK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, UK
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Rachel Kerr
- Department of Oncology, University of Oxford, Oxford, UK
| | - David Kerr
- Nuffield Division of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, UK; Cancer Research UK Scotland Centre, Glasgow and Edinburgh, UK
| | - David N Church
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|