Fischer K, Linder OL, Erne SA, Stark AW, Obrist SJ, Bernhard B, Guensch DP, Huber AT, Kwong RY, Gräni C. Reproducibility and its confounders of CMR feature tracking myocardial strain analysis in patients with suspected myocarditis.
Eur Radiol 2021;
32:3436-3446. [PMID:
34932165 PMCID:
PMC9038796 DOI:
10.1007/s00330-021-08416-5]
[Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/23/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Objectives
Cardiovascular magnetic resonance feature tracking (CMR-FT) is an emerging technique for assessing myocardial strain with valuable diagnostic and prognostic potential. However, the reproducibility of biventricular CMR-FT analysis in a large cardiovascular population has not been assessed. Also, evidence of confounders impacting reader reproducibility for CMR-FT in patients is unknown and currently limits the clinical implementation of this technique.
Methods
From a dual-center database of patients referred to CMR for suspected myocarditis, 125 patients were randomly selected to undergo biventricular CMR-FT analysis for 2-dimensional systolic and diastolic measures, with additional 3-dimensional analysis for the left ventricle. All image analysis was replicated by a single reader and by a second reader for intra- and inter-reader analysis (Circle Cardiovascular Imaging). Reliability was tested with intraclass correlation (ICC) tests, and the impact of imaging confounders on agreement was assessed through multivariable analysis.
Results
Left and right ventricular ejection fractions were reduced in 34% and 37% of the patients, respectively. Good to excellent reliability was shown for 2D (all ICC > 0.85) and 3D (all ICC > 0.70) peak strain and early diastolic strain rate for both ventricles in longitudinal orientation as well as circumferential orientations for the left ventricle. An increased slice number improved agreement while the presence of pericardial effusion compromised diastolic strain rate agreement, and arrhythmia compromised right ventricular agreement.
Conclusion
In a large clinical cohort, we could show CMR-FT yields excellent inter-reader and intra-reader reproducibility. Multi-parametric CMR-FT of the right and left ventricles appears to be a robust tool in cardiovascular patients referred to CMR.
Clinical trial registration.
ClinicalTrials.gov Identifier: NCT03470571, NCT04774549.
Key Points
• Cardiovascular magnetic resonance feature tracking (CMR-FT) is an emerging technique to measure myocardial strain in cardiovascular patients referred for CMR; however, the evaluation of its reproducibility in a large cohort has not yet been performed.
• In a large clinical cohort, CMR-FT yields excellent inter-reader and intra-reader reproducibility for both left and right ventricular systolic and diastolic parameters.
• Arrhythmia and pericardial effusion compromise agreement of select FT parameters, but poor ejection fraction does not.
Supplementary Information
The online version contains supplementary material available at 10.1007/s00330-021-08416-5.
Collapse