1
|
Mamandipoor B, Wernly S, Semmler G, Flamm M, Jung C, Aigner E, Datz C, Wernly B, Osmani V. Machine learning models predict liver steatosis but not liver fibrosis in a prospective cohort study. Clin Res Hepatol Gastroenterol 2023; 47:102181. [PMID: 37467893 DOI: 10.1016/j.clinre.2023.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Screening for liver fibrosis continues to rely on laboratory panels and non-invasive tests such as FIB-4-score and transient elastography. In this study, we evaluated the potential of machine learning (ML) methods to predict liver steatosis on abdominal ultrasound and liver fibrosis, namely the intermediate-high risk of advanced fibrosis, in individuals participating in a screening program for colorectal cancer. METHODS We performed ultrasound on 5834 patients admitted between 2006 and 2020, and transient elastography on a subset of 1240 patients. Steatosis on ultrasound was diagnosed if liver areas showed a significantly increased echogenicity compared to the renal parenchyma. Liver fibrosis was defined as a liver stiffness measurement ≥8 kPa in transient elastography. We evaluated the performance of three algorithms, namely Extreme Gradient Boosting, Feed-Forward neural network and Logistic Regression, deriving the models using data from patients admitted from January 2007 up to January 2016 and prospectively evaluating on the data of patients admitted from January 2016 up to March 2020. We also performed a performance comparison with the standard clinical test based on Fibrosis-4 Index (FIB-4). RESULTS The mean age was 58±9 years with 3036 males (52%). Modelling laboratory parameters, clinical parameters, and data on eight food types/dietary patterns, we achieved high performance in predicting liver steatosis on ultrasound with AUC of 0.87 (95% CI [0.87-0.87]), and moderate performance in predicting liver fibrosis with AUC of 0.75 (95% CI [0.74-0.75]) using XGBoost machine learning algorithm. Patient-reported variables did not significantly improve predictive performance. Gender-specific analyses showed significantly higher performance in males with AUC of 0.74 (95% CI [0.73-0.74]) in comparison to female patients with AUC of 0.66 (95% CI [0.65-0.66]) in prediction of liver fibrosis. This difference was significantly smaller in prediction of steatosis with AUC of 0.85 (95% CI [0.83-0.87]) in female patients, in comparison to male patients with AUC of 0.82 (95% CI [0.80-0.84]). CONCLUSION ML based on point-prevalence laboratory and clinical information predicts liver steatosis with high accuracy and liver fibrosis with moderate accuracy. The observed gender differences suggest the need to develop gender-specific models.
Collapse
Affiliation(s)
| | - Sarah Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maria Flamm
- Institute of general practice, family medicine and preventive medicine, Paracelsus Medical University, Salzburg, Austria
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Elmar Aigner
- Clinic I for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria; Institute of general practice, family medicine and preventive medicine, Paracelsus Medical University, Salzburg, Austria
| | - Venet Osmani
- Information School, University of Sheffield, United Kingdom.
| |
Collapse
|
2
|
Urias E, Chen VL. Screening for At-Risk Nonalcoholic Fatty Liver Disease in the Primary Care Setting. Semin Liver Dis 2023; 43:133-141. [PMID: 37105224 PMCID: PMC10668862 DOI: 10.1055/a-2082-5203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
While nonalcoholic fatty liver disease is a leading cause of end-stage liver disease, most patients with nonalcoholic fatty liver disease do not develop cirrhosis and its complications. Therefore, risk stratification using inexpensive, noninvasive screening modalities is critical to avoid overdiagnosis and overtreatment of a large proportion of the population. In this review, we discuss the data supporting screening and current professional society recommendations on this topic. Screening for at-risk nonalcoholic fatty liver disease is recommended in patients with risk factors including diabetes, the metabolic syndrome, hepatic steatosis, and elevated aminotransferases. Screening typically consists of noninvasive testing using serum biomarkers followed by elastography using specialized imaging modalities. This sequential screening approach accurately identifies both high- and low-risk patients and is cost-effective when applied to at-risk populations. In conclusion, screening for advanced nonalcoholic fatty liver disease in the primary care setting is a crucial part of identifying high-risk patients who may benefit from aggressive intervention while avoiding overtreatment of patients at low risk of liver-related complications.
Collapse
Affiliation(s)
- Esteban Urias
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Mahzari A. Artificial intelligence in nonalcoholic fatty liver disease. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Nonalcoholic fatty liver disease (NAFLD) has led to serious health-related complications worldwide. NAFLD has wide pathological spectra, ranging from simple steatosis to hepatitis to cirrhosis and hepatocellular carcinoma. Artificial intelligence (AI), including machine learning and deep learning algorithms, has provided great advancement and accuracy in identifying, diagnosing, and managing patients with NAFLD and detecting squeal such as advanced fibrosis and risk factors for hepatocellular cancer. This review summarizes different AI algorithms and methods in the field of hepatology, focusing on NAFLD.
Methods
A search of PubMed, WILEY, and MEDLINE databases were taken as relevant publications for this review on the application of AI techniques in detecting NAFLD in suspected population
Results
Out of 495 articles searched in relevant databases, 49 articles were finally included and analyzed. NASH-Scope model accurately distinguished between NAFLD and non-NAFLD and between NAFLD without fibrosis and NASH with fibrosis. The logistic regression (LR) model had the highest accuracy, whereas the support vector machine (SVM) had the highest specificity and precision in diagnosing NAFLD. An extreme gradient boosting model had the highest performance in predicting non-alcoholic steatohepatitis (NASH). Electronic health record (EHR) database studies helped the diagnose NAFLD/NASH. Automated image analysis techniques predicted NAFLD severity. Deep learning radiomic elastography (DLRE) had perfect accuracy in diagnosing the cases of advanced fibrosis.
Conclusion
AI in NAFLD has streamlined specific patient identification and has eased assessment and management methods of patients with NAFLD.
Collapse
|
4
|
Ülger Y, Delik A. Artificial intelligence model with deep learning in nonalcoholic fatty liver disease diagnosis: genetic based artificial neural networks. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:398-406. [PMID: 36448439 DOI: 10.1080/15257770.2022.2152046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in the world. The NAFLD spectrum includes simple steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Genetic, nutritional factors, obesity, insulin resistance, gut microbiota are among the risk factors for NAFLD. The genetic variant Patatin-like phospholipase domain-containing protein 3 (PNPLA3) plays an important role in the development of a number of liver diseases ranging from steatosis, chronic hepatitis, cirrhosis and HCC. Due to the increase in the prevalence of NAFLD, new models are being developed with machine learning, deep learning, artificial neural network (ANN) algorithms in the field of artificial intelligence (AI) to determine low-cost, noninvasive diagnostic methods. Models developed with ANN from AI modules are important in order to examine biochemical and genomic information in detail in the diagnosis of NAFLD. The aim of this study is to develop a simple ANN model using biochemical and genotypic parameters in the diagnosis of NAFLD. A total of 300 patients followed up with the diagnosis of NAFLD and 100 controls were included in the study. The data set was divided into two as training and test set. Genotyping of PNPLA3 (CC, CG, GG) as genomic analysis was performed with real time PCR device. The algorithm used for the diagnosis of NAFLD was designed using age, body mass index (BMI), mean platelet volume (MPV), insulin resistance (IR), alanine aminotransferase (ALT), genotype PNPLA3 (CC, CG, GG) parameters. MLP Classifier algorithm from ANN was used in the development of the model. ANN algorithms are used in python programming language. Statistical analyzes were made in SPSS program. Percent accuracy, area under the ROC curve, confusion matrix, Positive (PPV) and Negative Predicted Value (NPV) values, precision, recall, and f1-score results were determined. The accuracy percentage was determined as 0.979 in the train set and 0.970 in the test set. The Log Loss value was set to 0.09. The developed neural network achieved an accuracy percentage of 97.0% during testing, with an area under the ROC curve value of 0.95. We think that the ANN model developed with genomic and biochemical parameters can be used as a cost-effective, noninvasive new predictive diagnostic model in clinical practice in the diagnosis of NAFLD.
Collapse
Affiliation(s)
- Yakup Ülger
- Faculty of Medicine, Department of Gastroenterology, Cukurova University, Adana, Turkey
| | - Anıl Delik
- Faculty of Medicine, Department of Gastroenterology, Cukurova University, Adana, Turkey
- Faculty of Science and Literature Department of Biology, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Carteri RB, Grellert M, Borba DL, Marroni CA, Fernandes SA. Machine learning approaches using blood biomarkers in non-alcoholic fatty liver diseases. Artif Intell Gastroenterol 2022; 3:80-87. [DOI: 10.35712/aig.v3.i3.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is an important public health concern. Early diagnosis of NAFLD and potential progression to nonalcoholic steatohepatitis (NASH), could reduce the further advance of the disease, and improve patient outcomes. Aiming to support patient diagnostic and predict specific outcomes, the interest in artificial intelligence (AI) methods in hepatology has dramatically increased, especially with the application of less-invasive biomarkers. In this review, our objective was twofold: Firstly, we presented the most frequent blood biomarkers in NAFLD and NASH and secondly, we reviewed recent literature regarding the use of machine learning (ML) methods to predict NAFLD and NASH in large cohorts. Strikingly, these studies provide insights into ML application in NAFLD patients' prognostics and ranked blood biomarkers are able to provide a recognizable signature allowing cost-effective NAFLD prediction and also differentiating NASH patients. Future studies should consider the limitations in the current literature and expand the application of these algorithms in different populations, fortifying an already promising tool in medical science.
Collapse
Affiliation(s)
- Randhall B Carteri
- Department of Nutrition, Methodist University Center - IPA, Porto Alegre 90420-060, Rio Grande do Sul, Brazil
- Department of Health and Behaviour, Catholic University of Pelotas, Pelotas 96015-560, Rio Grande do Sul, Brazil
| | - Mateus Grellert
- Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Daniela Luisa Borba
- Postgraduate Program in Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Claudio Augusto Marroni
- Department of Gastroenterology and Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Sabrina Alves Fernandes
- Postgraduate Program in Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Gunasekharan A, Jiang J, Nickerson A, Jalil S, Mumtaz K. Application of artificial intelligence in non-alcoholic fatty liver disease and viral hepatitis. Artif Intell Gastroenterol 2022; 3:46-53. [DOI: 10.35712/aig.v3.i2.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and chronic viral hepatitis are among the most significant causes of liver-related mortality worldwide. It is critical to develop reliable methods of predicting progression to fibrosis, cirrhosis, and decompensated liver disease. Current screening methods such as biopsy and transient elastography are limited by invasiveness and observer variation in analysis of data. Artificial intelligence (AI) provides a unique opportunity to more accurately diagnose NAFLD and viral hepatitis, and to identify patients at high risk for disease progression. We conducted a literature review of existing evidence for AI in NAFLD and viral hepatitis. Thirteen articles on AI in NAFLD and 14 on viral hepatitis were included in our analysis. We found that machine learning algorithms were comparable in accuracy to current methods for diagnosis and fibrosis prediction (MELD-Na score, liver biopsy, FIB-4 score, and biomarkers). They also reliably predicted hepatitis C treatment failure and hepatic encephalopathy, for which there are currently no established prediction tools. These studies show that AI could be a helpful adjunct to existing techniques for diagnosing, monitoring, and treating both NAFLD and viral hepatitis.
Collapse
Affiliation(s)
| | - Joanna Jiang
- Department of Medicine, Ohio State University, Columbus, OH 43210, United States
| | - Ashley Nickerson
- Department of Medicine, Ohio State University, Columbus, OH 43210, United States
| | - Sajid Jalil
- Department of Medicine, Ohio State University, Columbus, OH 43210, United States
| | - Khalid Mumtaz
- Department of Medicine, Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
7
|
Chen SB, Novoa RA. Artificial intelligence for dermatopathology: Current trends and the road ahead. Semin Diagn Pathol 2022; 39:298-304. [DOI: 10.1053/j.semdp.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
|