1
|
Zoratti E, Wood R, Pomés A, Da Silva Antunes R, Altman MC, Benson B, Wheatley LM, Cho K, Calatroni A, Little FF, Pongracic J, Makhija M, Khurana Hershey GK, Sherenian MG, Rivera-Spoljaric K, Stokes JR, Gill MA, Gruchalla RS, Chambliss J, Liu AH, Kattan M, Busse PJ, Bacharier LB, Sheehan W, Kim H, Glesner J, Gergen PJ, Togias A, Baucom JL, Visness CM, Sette A, Busse WW, Jackson DJ. A pediatric randomized, controlled trial of German cockroach subcutaneous immunotherapy. J Allergy Clin Immunol 2024; 154:735-744.e10. [PMID: 38718950 PMCID: PMC11380590 DOI: 10.1016/j.jaci.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVES We sought to determine whether nasal allergen challenge (NAC) responses to cockroach allergen would improve following 1 year of SCIT. METHODS Urban children with asthma, who were cockroach-sensitized and reactive on NAC, participated in a year-long randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean Total Nasal Symptom Score (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test wheal size, serum allergen-specific antibody production, and T-cell responses to cockroach allergen were assessed. RESULTS Changes in mean NAC TNSS did not differ between SCIT-assigned (n = 28) versus placebo-assigned (n = 29) participants (P = .63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum-specific IgE decreased to a similar extent in both groups, while decreased cockroach skin prick test wheal size was greater among SCIT participants (P = .04). A 200-fold increase in cockroach serum-specific IgG4 was observed among subjects receiving SCIT (P < .001) but was unchanged in the placebo group. T-cell IL-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (P = .002), while no effect was observed for IL-10 or IFN-γ. CONCLUSIONS A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum-specific IgG4 serum production and down-modulation of allergen-stimulated T-cell responses.
Collapse
Affiliation(s)
- Edward Zoratti
- Division of Allergy and Immunology, Department of Medicine, Henry Ford Health, Detroit, Mich.
| | - Robert Wood
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | | | | | | | | | - Lisa M Wheatley
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - Kate Cho
- Rho, Inc, Federal Research Operations, Durham, NC
| | | | - Frederic F Little
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - J Pongracic
- Department of Pediatrics, Anne and Robert H. Lurie Children's Hospital, Chicago, Ill
| | - Melanie Makhija
- Department of Pediatrics, Anne and Robert H. Lurie Children's Hospital, Chicago, Ill
| | | | | | | | - Jeffrey R Stokes
- Department of Pediatrics, St Louis Children's Hospital, St Louis, Mo
| | - Michelle A Gill
- Department of Pediatrics, St Louis Children's Hospital, St Louis, Mo
| | - Rebecca S Gruchalla
- Department of Pediatrics, University of Texas Southwest Medical Center, Dallas, Tex
| | - Jeffrey Chambliss
- Department of Pediatrics, University of Texas Southwest Medical Center, Dallas, Tex
| | - Andrew H Liu
- Department of Pediatrics, Children's Hospital of Colorado, Aurora, Colo
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Paula J Busse
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Children's Hospital at Vanderbilt University, Nashville, Tenn
| | - William Sheehan
- Department of Pediatrics, Children's National Hospital, Washington, DC
| | - Haejin Kim
- Division of Allergy and Immunology, Department of Medicine, Henry Ford Health, Detroit, Mich
| | | | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | | | | | | | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
2
|
da Silva Antunes R, Weiskopf D, Sidney J, Rubiro P, Peters B, Arlehamn CSL, Grifoni A, Sette A. The MegaPool Approach to Characterize Adaptive CD4+ and CD8+ T Cell Responses. Curr Protoc 2023; 3:e934. [PMID: 37966108 PMCID: PMC10662678 DOI: 10.1002/cpz1.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
3
|
Lewis SA, Sutherland A, Soldevila F, Westernberg L, Aoki M, Frazier A, Maiche S, Erlewyn-Lajeunesse M, Arshad H, Leonard S, Laubach S, Dantzer JA, Wood RA, Sette A, Seumois G, Vijayanand P, Peters B. Identification of cow milk epitopes to characterize and quantify disease-specific T cells in allergic children. J Allergy Clin Immunol 2023; 152:1196-1209. [PMID: 37604312 PMCID: PMC10846667 DOI: 10.1016/j.jaci.2023.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Cow milk (CM) allergy is the most prevalent food allergy in young children in the United States and Great Britain. Current diagnostic tests are either unreliable (IgE test and skin prick test) or resource-intensive with risks (food challenges). OBJECTIVE We sought to determine whether allergen-specific T cells in CM-allergic (CMA) patients have a distinct quality and/or quantity that could potentially be used as a diagnostic marker. METHODS Using PBMCs from 147 food-allergic pediatric subjects, we mapped T-cell responses to a set of reactive epitopes in CM that we compiled in a peptide pool. This pool induced cytokine responses in in vitro cultured cells distinguishing subjects with CMA from subjects without CMA. We further used the pool to isolate and characterize antigen-specific CD4 memory T cells using flow cytometry and single-cell RNA/TCR sequencing assays. RESULTS We detected significant changes in the transcriptional program and clonality of CM antigen-specific (CM+) T cells elicited by the pool in subjects with CMA versus subjects without CMA ex vivo. CM+ T cells from subjects with CMA had increased percentages of FOXP3+ cells over FOXP3- cells. FOXP3+ cells are often equated with regulatory T cells that have suppressive activity, but CM+ FOXP3+ cells from subjects with CMA showed significant expression of interferon-responsive genes and dysregulated chemokine receptor expression compared with subjects without CMA, suggesting that these are not conventional regulatory T cells. The CM+ FOXP3+ cells were also more clonally expanded than the FOXP3- population. We were further able to use surface markers (CD25, CD127, and CCR7) in combination with our peptide pool stimulation to quantify these CM+ FOXP3+ cells by a simple flow-cytometry assay. We show increased percentages of CM+ CD127-CD25+ cells from subjects with CMA in an independent cohort, which could be used for diagnostic purposes. Looking specifically for TH2 cells normally associated with allergic diseases, we found a small population of clonally expanded CM+ cells that were significantly increased in subjects with CMA and that had high expression of TH2 cytokines and pathogenic TH2/T follicular helper markers. CONCLUSIONS Overall, these findings suggest that there are several differences in the phenotypes of CM+ T cells with CM allergy and that the increase in CM+ FOXP3+ cells is a potential diagnostic marker of an allergic state. Such markers have promising applications in monitoring natural disease outgrowth and/or the efficacy of immunotherapy that will need to be validated in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Minori Aoki
- La Jolla Institute for Immunology, San Diego, Calif
| | | | | | - Mich Erlewyn-Lajeunesse
- University Hospital Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Hasan Arshad
- University Hospital Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stephanie Leonard
- Division of Allergy and Immunology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, Calif
| | - Susan Laubach
- Division of Allergy and Immunology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, Calif
| | - Jennifer A Dantzer
- Division of Allergy and Immunology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Robert A Wood
- Division of Allergy and Immunology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Alessandro Sette
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif
| | | | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif
| | - Bjoern Peters
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif.
| |
Collapse
|
4
|
Pomés A, Arruda LK. Cockroach allergy: Understanding complex immune responses to develop novel therapies. Mol Immunol 2023; 156:157-169. [PMID: 36930991 PMCID: PMC10134214 DOI: 10.1016/j.molimm.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
Cockroach allergy is associated with the development of asthma. The identification of cockroach allergens, which began in the 1990 s, is an ongoing process that has led to the current listing of 20 official allergen groups in the WHO/IUIS Allergen Nomenclature database. The function and structure of some of these allergens has been determined and define their natural delivery into the environment and their allergenicity. Analysis of antigenic determinants by X-ray crystallography and rational design of site-directed mutagenesis led to the identification of IgE binding sites for the design of molecules with reduced IgE reactivity and T cell modulatory capacity. New developments in recent years include component analyses of B and T cell reactivity and a recent cockroach immunotherapy trial, CRITICAL, that will contribute to understand the immune response to cockroach and to define future directions for cockroach allergy diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Director of Basic Research, InBio, 700 Harris Street, Charlottesville, VA 22903, USA.
| | - L Karla Arruda
- Professor of Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
5
|
Yu ED, Wang E, Garrigan E, Sutherland A, Khalil N, Kearns K, Pham J, Schulten V, Peters B, Frazier A, Sette A, da Silva Antunes R. Ex vivo assays show human gamma-delta T cells specific for common allergens are Th1-polarized in allergic donors. CELL REPORTS METHODS 2022; 2:100350. [PMID: 36590684 PMCID: PMC9795325 DOI: 10.1016/j.crmeth.2022.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/15/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
Gamma-delta (γδ) T cells contribute to the pathology of many immune-related diseases; however, no ex vivo assays to study their activities are currently available. Here, we established a methodology to characterize human allergen-reactive γδ T cells in peripheral blood using an activation-induced marker assay targeting upregulated 4-1BB and CD69 expression. Broad and reproducible ex vivo allergen-reactive γδ T cell responses were detected in donors sensitized to mouse, cockroach, house dust mite, and timothy grass, but the response did not differ from that in non-allergic participants. The reactivity to 4 different allergen extracts was readily detected in 54.2%-100% of allergic subjects in a donor- and allergen-specific pattern and was abrogated by T cell receptor (TCR) blocking. Analysis of CD40L upregulation and intracellular cytokine staining revealed a T helper type 1 (Th1)-polarized response against mouse and cockroach extract stimulation. These results support the existence of allergen-reactive γδ T cells and their potential use in rebalancing dysregulated Th2 responses in allergic diseases.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Natalie Khalil
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kendall Kearns
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - John Pham
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Veronique Schulten
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| |
Collapse
|
6
|
索 爽, 马 婷, 王 洪, 王 也, 王 学. [Sensitization characteristics of cockroach in Beijing area]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:835-840. [PMID: 36347575 PMCID: PMC10127569 DOI: 10.13201/j.issn.2096-7993.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Objective:To investigate the sensitization characteristics of cockroach in patients with allergic rhinitis(AR) and/or allergic asthma in Beijing area, and to provide basis for the prevention and treatment of cockroach sensitized population. Methods:Clinical data of patients with allergic rhinitis and/or asthma from January 2017 to December 2019 treated in the outpatient Department of Allergy of Beijing Shijitan Hospital were retrospectively analyzed.Skin prick test (SPT) was performed with cockroach allergen reagents. The cockroach sensitization of patients with different ages and diseases was compared, and the population distribution characteristics of cockroach sensitization were observed.Statistical analysis was performed using SAS 9.4 software. Results:A total of 9915 patients were enrolled in the end.The total positive rate of cockroach SPT was 24.79%(2458/9915),with the highest positive rate (31.65%) in 15-19 years old group. The positive rate of SPT increased with age in patients less than 14 years old, while the positive rate of SPT was basically flat with age in patients more than 20 years old .The positive rate of cockroach SPT was 24.83% (2355/9484) in allergic rhinitis patients,26.38% (410/1554) in allergic asthma patients, and 27.34% (307/1123) in allergic rhinitis combined with asthma patients. Single cockroach SPT positive accounted for 9.64% (237/2458), cockroach with other indoor inhalation allergens SPT positive accounted for 90.36% (2221/2458). The positive SPT rates for combined Der f , Der p,house dust, cat dander, and dog dander were 74.25% (1825/2458), 66.27% (1629/2458), 58.99% (1450/2458), 43.08% (1059/2458), and 40.85% (1004/2458), respectively.In allergic rhinitis,asthma,and allergic rhinitis combined with asthma,the cockroach SPT positive rate was higher in the adult group than that in juvenile group,and the difference of positive rate in allergic rhinitis group was statistically significant(25.81% vs 19.07%, P<0.001).In the juvenile group, the positive rate of SPT in AR combined with asthma was higher than that in AR and that in asthma. Conclusion:Cockroach allergy in patients with AR and/or allergic asthma in Beijing is relatively high, most of them are sensitized by multiple inhalation allergens, and the sensitization degree of adults is higher than that of juvenile.
Collapse
Affiliation(s)
- 爽 索
- 首都医科大学附属北京世纪坛医院变态反应科(北京,100038)Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - 婷婷 马
- 首都医科大学附属北京世纪坛医院变态反应科(北京,100038)Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - 洪田 王
- 首都医科大学附属北京世纪坛医院变态反应科(北京,100038)Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - 也 王
- 中国医学科学院 北京协和医学院群医学及公共卫生学院School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College
| | - 学艳 王
- 首都医科大学附属北京世纪坛医院变态反应科(北京,100038)Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
7
|
Wang J, Zhao Y, Zhang X, Tu W, Wan R, Shen Y, Zhang Y, Trivedi R, Gao P. Type II alveolar epithelial cell aryl hydrocarbon receptor protects against allergic airway inflammation through controlling cell autophagy. Front Immunol 2022; 13:964575. [PMID: 35935956 PMCID: PMC9355649 DOI: 10.3389/fimmu.2022.964575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rationale Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered as an important regulator for immune diseases. We have previously shown that AhR protects against allergic airway inflammation. The underlying mechanism, however, remains undetermined. Objectives We sought to determine whether AhR specifically in type II alveolar epithelial cells (AT2) modulates allergic airway inflammation and its underlying mechanisms. Methods The role of AhR in AT2 cells in airway inflammation was investigated in a mouse model of asthma with AhR conditional knockout mice in AT2 cells (Sftpc-Cre;AhRf/f ). The effect of AhR on allergen-induced autophagy was examined by both in vivo and in vitro analyses. The involvement of autophagy in airway inflammation was analyzed by using autophagy inhibitor chloroquine. The AhR-regulated gene profiling in AT2 cells was also investigated by RNA sequencing (RNA-seq) analysis. Results Sftpc-Cre;AhRf/f mice showed exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, an increased allergen-induced autophagy was observed in the lung tissues of Sftpc-Cre;AhRf/f mice when compared with wild-type mice. Further analyses suggested a functional axis of AhR-TGF-β1 that is critical in driving allergic airway inflammation through regulating allergen-induced cellular autophagy. Furthermore, inhibition of autophagy with autophagy inhibitor chloroquine significantly suppressed cockroach allergen-induced airway inflammation, Th2 cytokines in BALFs, and expression of autophagy-related genes LC3 and Atg5 in the lung tissues. In addition, RNA-seq analysis suggests that autophagy is one of the major pathways and that CALCOCO2/NDP52 and S1009 are major autophagy-associated genes in AT2 cells that may contribute to the AhR-mediated cockroach allergen-induced airway inflammation and, subsequently, allergic asthma. Conclusion These results suggest that AhR in AT2 cells functions as a protective mechanism against allergic airway inflammation through controlling cell autophagy.
Collapse
Affiliation(s)
- Ji Wang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Yilin Zhao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xin Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ruchik Trivedi
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Peisong Gao,
| |
Collapse
|