1
|
Hunter B, Benoit MPMH, Asenjo AB, Doubleday C, Trofimova D, Frazer C, Shoukat I, Sosa H, Allingham JS. Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape. Nat Commun 2022; 13:4198. [PMID: 35859148 PMCID: PMC9300613 DOI: 10.1038/s41467-022-31794-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.9 Å) of Candida albicans Kip3 in different catalytic states on the microtubule lattice and on a curved microtubule end mimic. We also determined a crystal structure of microtubule-unbound CaKip3-ADP (2.0 Å) and analyzed the biochemical activity of CaKip3 and kinesin-1 mutants. These data reveal that the microtubule depolymerization activity of kinesin-8 originates from conformational changes of its motor core that are amplified by dynamic contacts between its extended loop-2 and tubulin. On curved microtubule ends, loop-1 inserts into preceding motor domains, forming head-to-tail arrays of kinesin-8s that complement loop-2 contacts with curved tubulin and assist depolymerization. On straight tubulin protofilaments in the microtubule lattice, loop-2-tubulin contacts inhibit conformational changes in the motor core, but in the ADP-Pi state these contacts are relaxed, allowing neck-linker docking for motility. We propose that these tubulin shape-induced alternations between pro-microtubule-depolymerization and pro-motility kinesin states, regulated by loop-2, are the key to the dual activity of kinesin-8 motors.
Collapse
Affiliation(s)
- Byron Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Matthieu P M H Benoit
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Caitlin Doubleday
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Daria Trofimova
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Irsa Shoukat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
2
|
Lera-Ramirez M, Nédélec FJ, Tran PT. Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B. eLife 2022; 11:72630. [PMID: 35293864 PMCID: PMC9018073 DOI: 10.7554/elife.72630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.
Collapse
|
3
|
Jiao X, Gonsioroski A, Flaws JA, Qiao H. Iodoacetic acid disrupts mouse oocyte maturation by inducing oxidative stress and spindle abnormalities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115601. [PMID: 33126034 PMCID: PMC7746578 DOI: 10.1016/j.envpol.2020.115601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 05/29/2023]
Abstract
Disinfection by-products (DBPs) are compounds produced during the water disinfection process. Iodoacetic acid (IAA) is one of the unregulated DBPs in drinking water, with potent cytotoxicity and genotoxicity in animals. However, whether IAA has toxic effects on oocyte maturation remains unclear. Here, we show that IAA exposure resulted in metaphase I (MI) arrest and polar-body-extrusion failure in mouse oocytes, indicating that IAA had adverse effects on mouse oocyte maturation in vitro. Particularly, IAA treatment caused abnormal spindle assembly and chromosome misalignment. Previous studies reported that IAA is a known inducer of oxidative stress in non-germline cells. Correspondingly, we found that IAA exposure increased the reactive oxygen species (ROS) levels in oocytes in a dose-dependent manner, indicating IAA exposure could induce oxidative stress in oocytes. Simultaneously, DNA damage was also elevated in the nuclei of these IAA-exposed mouse oocytes, evidenced by increased γ-H2AX focus number. In addition, the un-arrested oocytes entered metaphase II (MII) with severe defects in spindle morphologies and chromosome alignment after 14-h IAA treatment. An antioxidant, N-acetyl-L-cysteine (NAC), reduced the elevated ROS level and restored the meiotic maturation in the IAA-exposed oocytes, which indicates that IAA-induced maturation failure in oocytes was mainly mediated by oxidative stress. Collectively, our results indicate that IAA exposure interfered with mouse oocyte maturation by elevating ROS levels, disrupting spindle assembly, inducing DNA damage, and causing MI arrest.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andressa Gonsioroski
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Guilloux G, Gibeaux R. Mechanisms of spindle assembly and size control. Biol Cell 2020; 112:369-382. [PMID: 32762076 DOI: 10.1111/boc.202000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
The spindle is crucial for cell division by allowing the faithful segregation of replicated chromosomes to daughter cells. Proper segregation is ensured only if microtubules (MTs) and hundreds of other associated factors interact to assemble this complex structure with the appropriate architecture and size. In this review, we describe the latest view of spindle organisation as well as the molecular gradients and mechanisms underlying MT nucleation and spindle assembly. We then discuss the overlapping physical and molecular constraints that dictate spindle morphology, concluding with a focus on spindle size regulation.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
5
|
Lin Y, Wei YL, She ZY. Kinesin-8 motors: regulation of microtubule dynamics and chromosome movements. Chromosoma 2020; 129:99-110. [PMID: 32417983 DOI: 10.1007/s00412-020-00736-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023]
Abstract
Microtubules are essential for intracellular transport, cell motility, spindle assembly, and chromosome segregation during cell division. Microtubule dynamics regulate the proper spindle organization and thus contribute to chromosome congression and segregation. Accumulating studies suggest that kinesin-8 motors are emerging regulators of microtubule dynamics and organizations. In this review, we provide an overview of the studies focused on kinesin-8 motors in cell division. We discuss the structures and molecular kinetics of kinesin-8 motors. We highlight the essential roles and mechanisms of kinesin-8 in the regulation of microtubule dynamics and spindle organization. We also shed light on the functions of kinesin-8 motors in chromosome movement and the spindle assembly checkpoint during the cell cycle.
Collapse
Affiliation(s)
- Yang Lin
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China.,Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
6
|
Krüger LK, Sanchez JL, Paoletti A, Tran PT. Kinesin-6 regulates cell-size-dependent spindle elongation velocity to keep mitosis duration constant in fission yeast. eLife 2019; 8:42182. [PMID: 30806623 PMCID: PMC6391065 DOI: 10.7554/elife.42182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
The length of the mitotic spindle scales with cell size in a wide range of organisms during embryonic development. Interestingly, in C. elegans embryos, this goes along with temporal regulation: larger cells speed up spindle assembly and elongation. We demonstrate that, similarly in fission yeast, spindle length and spindle dynamics adjust to cell size, which allows to keep mitosis duration constant. Since prolongation of mitosis was shown to affect cell viability, this may resemble a mechanism to regulate mitosis duration. We further reveal how the velocity of spindle elongation is regulated: coupled to cell size, the amount of kinesin-6 Klp9 molecules increases, resulting in an acceleration of spindle elongation in anaphase B. In addition, the number of Klp9 binding sites to microtubules increases overproportionally to Klp9 molecules, suggesting that molecular crowding inversely correlates to cell size and might have an impact on spindle elongation velocity control.
Collapse
Affiliation(s)
| | | | - Anne Paoletti
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Phong Thanh Tran
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
7
|
Shrestha S, Hazelbaker M, Yount AL, Walczak CE. Emerging Insights into the Function of Kinesin-8 Proteins in Microtubule Length Regulation. Biomolecules 2018; 9:biom9010001. [PMID: 30577528 PMCID: PMC6359247 DOI: 10.3390/biom9010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Proper regulation of microtubules (MTs) is critical for the execution of diverse cellular processes, including mitotic spindle assembly and chromosome segregation. There are a multitude of cellular factors that regulate the dynamicity of MTs and play critical roles in mitosis. Members of the Kinesin-8 family of motor proteins act as MT-destabilizing factors to control MT length in a spatially and temporally regulated manner. In this review, we focus on recent advances in our understanding of the structure and function of the Kinesin-8 motor domain, and the emerging contributions of the C-terminal tail of Kinesin-8 proteins to regulate motor activity and localization.
Collapse
Affiliation(s)
- Sanjay Shrestha
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| | - Mark Hazelbaker
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| | - Amber L Yount
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
8
|
Edzuka T, Goshima G. Drosophila kinesin-8 stabilizes the kinetochore-microtubule interaction. J Cell Biol 2018; 218:474-488. [PMID: 30538142 PMCID: PMC6363442 DOI: 10.1083/jcb.201807077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Kinesin-8 motor proteins control chromosome alignment in a variety of species, but the specific biochemical activity responsible is unclear. Edzuka and Goshima find that Drosophila kinesin-8 (Klp67A) exhibits both microtubule plus end–stabilizing and –destabilizing activities in vitro. In cells, Klp67A, and likely human kinesin-8 (KIF18A) as well, stabilize the kinetochore–microtubule attachment during mitosis. Kinesin-8 is required for proper chromosome alignment in a variety of animal and yeast cell types. However, it is unclear how this motor protein family controls chromosome alignment, as multiple biochemical activities, including inconsistent ones between studies, have been identified. Here, we find that Drosophila kinesin-8 (Klp67A) possesses both microtubule (MT) plus end–stabilizing and –destabilizing activity, in addition to kinesin-8's commonly observed MT plus end–directed motility and tubulin-binding activity in vitro. We further show that Klp67A is required for stable kinetochore–MT attachment during prometaphase in S2 cells. In the absence of Klp67A, abnormally long MTs interact in an “end-on” fashion with kinetochores at normal frequency. However, the interaction is unstable, and MTs frequently become detached. This phenotype is rescued by ectopic expression of the MT plus end–stabilizing factor CLASP, but not by artificial shortening of MTs. We show that human kinesin-8 (KIF18A) is also important to ensure proper MT attachment. Overall, these results suggest that the MT-stabilizing activity of kinesin-8 is critical for stable kinetochore–MT attachment.
Collapse
Affiliation(s)
- Tomoya Edzuka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.,Marine Biological Laboratory, Woods Hole, MA
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan .,Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
9
|
Fegaras E, Forer A. Chromosomes selectively detach at one pole and quickly move towards the opposite pole when kinetochore microtubules are depolymerized in Mesostoma ehrenbergii spermatocytes. PROTOPLASMA 2018; 255:1205-1224. [PMID: 29468300 DOI: 10.1007/s00709-018-1214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
In a typical cell division, chromosomes align at the metaphase plate before anaphase commences. This is not the case in Mesostoma spermatocytes. Throughout prometaphase, the three bivalents persistently oscillate towards and away from either pole, at average speeds of 5-6 μm/min, without ever aligning at a metaphase plate. In our experiments, nocodazole (NOC) was added to prometaphase spermatocytes to depolymerize the microtubules. Traditional theories state that microtubules are the producers of force in the spindle, either by tubulin depolymerizing at the kinetochore (PacMan) or at the pole (Flux). Accordingly, if microtubules are quickly depolymerized, the chromosomes should arrest at the metaphase plate and not move. However, in 57/59 cells, at least one chromosome moved to a pole after NOC treatment, and in 52 of these cells, all three bivalents moved to the same pole. Thus, the movements are not random to one pole or other. After treatment with NOC, chromosome movement followed a consistent pattern. Bivalents stretched out towards both poles, paused, detached at one pole, and then the detached kinetochores quickly moved towards the other pole, reaching initial speeds up to more than 200 μm/min, much greater than anything previously recorded in this cell. As the NOC concentration increased, the average speeds increased and the microtubules disappeared faster. As the kinetochores approached the pole, they slowed down and eventually stopped. Similar results were obtained with colcemid treatment. Confocal immunofluorescence microscopy confirms that microtubules are not associated with moving chromosomes. Thus, these rapid chromosome movements may be due to non-microtubule spindle components such as actin-myosin or the spindle matrix.
Collapse
Affiliation(s)
- Eleni Fegaras
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Arthur Forer
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
10
|
Dave S, Anderson SJ, Sinha Roy P, Nsamba ET, Bunning AR, Fukuda Y, Gupta ML. Discrete regions of the kinesin-8 Kip3 tail differentially mediate astral microtubule stability and spindle disassembly. Mol Biol Cell 2018; 29:1866-1877. [PMID: 29874146 PMCID: PMC6085823 DOI: 10.1091/mbc.e18-03-0199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To function in diverse cellular processes, the dynamic properties of microtubules must be tightly regulated. Cellular microtubules are influenced by a multitude of regulatory proteins, but how their activities are spatiotemporally coordinated within the cell, or on specific microtubules, remains mostly obscure. The conserved kinesin-8 motor proteins are important microtubule regulators, and family members from diverse species combine directed motility with the ability to modify microtubule dynamics. Yet how kinesin-8 activities are appropriately deployed in the cellular context is largely unknown. Here we reveal the importance of the nonmotor tail in differentially controlling the physiological functions of the budding yeast kinesin-8, Kip3. We demonstrate that the tailless Kip3 motor domain adequately governs microtubule dynamics at the bud tip to allow spindle positioning in early mitosis. Notably, discrete regions of the tail mediate specific functions of Kip3 on astral and spindle microtubules. The region proximal to the motor domain operates to spatially regulate astral microtubule stability, while the distal tail serves a previously unrecognized role to control the timing of mitotic spindle disassembly. These findings provide insights into how nonmotor tail domains differentially control kinesin functions in cells and the mechanisms that spatiotemporally control the stability of cellular microtubules.
Collapse
Affiliation(s)
- Sandeep Dave
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Samuel J Anderson
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Pallavi Sinha Roy
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Emmanuel T Nsamba
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Angela R Bunning
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Yusuke Fukuda
- Cell and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Mohan L Gupta
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
11
|
Fassier C, Fréal A, Gasmi L, Delphin C, Ten Martin D, De Gois S, Tambalo M, Bosc C, Mailly P, Revenu C, Peris L, Bolte S, Schneider-Maunoury S, Houart C, Nothias F, Larcher JC, Andrieux A, Hazan J. Motor axon navigation relies on Fidgetin-like 1-driven microtubule plus end dynamics. J Cell Biol 2018. [PMID: 29535193 PMCID: PMC5940295 DOI: 10.1083/jcb.201604108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fassier et al. identify Fidgetin-like 1 (Fignl1) as a key growth cone (GC)-enriched microtubule (MT)-associated protein in motor circuit wiring. They show that Fignl1 modulates motor GC morphology and steering behavior by down-regulating EB binding at MT plus ends and promoting MT depolymerization beneath the cell cortex. During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end–tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.
Collapse
Affiliation(s)
- Coralie Fassier
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Amélie Fréal
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christian Delphin
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Daniel Ten Martin
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Stéphanie De Gois
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Monica Tambalo
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christophe Bosc
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Philippe Mailly
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Leticia Peris
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Susanne Bolte
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Centre National de la Recherche Scientifique FR3631, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Corinne Houart
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London, England, UK
| | - Fatiha Nothias
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Jean-Christophe Larcher
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Annie Andrieux
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Jamilé Hazan
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
12
|
Renda F, Pellacani C, Strunov A, Bucciarelli E, Naim V, Bosso G, Kiseleva E, Bonaccorsi S, Sharp DJ, Khodjakov A, Gatti M, Somma MP. The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure. PLoS Genet 2017; 13:e1006784. [PMID: 28505193 PMCID: PMC5448806 DOI: 10.1371/journal.pgen.1006784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/30/2017] [Accepted: 04/27/2017] [Indexed: 12/01/2022] Open
Abstract
INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6) results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP) demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC). Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A) accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.
Collapse
Affiliation(s)
- Fioranna Renda
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Claudia Pellacani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Anton Strunov
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | | | - Valeria Naim
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Elena Kiseleva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - David J. Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | | |
Collapse
|
13
|
Möckel MM, Heim A, Tischer T, Mayer TU. Xenopus laevis Kif18A is a highly processive kinesin required for meiotic spindle integrity. Biol Open 2017; 6:463-470. [PMID: 28228376 PMCID: PMC5399559 DOI: 10.1242/bio.023952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly and functionality of the mitotic spindle depends on the coordinated activities of microtubule-associated motor proteins of the dynein and kinesin superfamily. Our current understanding of the function of motor proteins is significantly shaped by studies using Xenopus laevis egg extract as its open structure allows complex experimental manipulations hardly feasible in other model systems. Yet, the Kinesin-8 orthologue of human Kif18A has not been described in Xenopus laevis so far. Here, we report the cloning and characterization of Xenopus laevis (Xl) Kif18A. Xenopus Kif18A is expressed during oocyte maturation and its depletion from meiotic egg extract results in severe spindle defects. These defects can be rescued by wild-type Kif18A, but not Kif18A lacking motor activity or the C-terminus. Single-molecule microscopy assays revealed that Xl_Kif18A possesses high processivity, which depends on an additional C-terminal microtubule-binding site. Human tissue culture cells depleted of endogenous Kif18A display mitotic defects, which can be rescued by wild-type, but not tail-less Xl_Kif18A. Thus, Xl_Kif18A is the functional orthologue of human Kif18A whose activity is essential for the correct function of meiotic spindles in Xenopus oocytes. Summary: The highly processive kinesin Kif18A, which is expressed during oocyte maturation in Xenopus laevis, is required for correct spindle formation in meiotic egg extracts and can functionally complement human Kif18A in tissue culture cells.
Collapse
Affiliation(s)
- Martin M Möckel
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Andreas Heim
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Thomas Tischer
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Thomas U Mayer
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
14
|
Abstract
Generation of high-contrast and high-signal fluorescent 3D speckles allows fluorescent speckle microscopy to be performed in readily available libraries of cell lines and primary tissues for the measurement of microtubule turnover and sliding. The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration.
Collapse
Affiliation(s)
- António J Pereira
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Michael Belsley
- Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helder Maiato
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal Cell Division Unit, Department of Experimental Biology, Faculty of Medicine, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
15
|
Gergely ZR, Crapo A, Hough LE, McIntosh JR, Betterton MD. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast. Mol Biol Cell 2016; 27:3490-3514. [PMID: 27146110 PMCID: PMC5221583 DOI: 10.1091/mbc.e15-07-0505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Kinesin-8 motor proteins destabilize microtubules and increase chromosome loss in mitosis. In fission yeast, aberrant microtubule-driven kinetochore pushing movements, tripolar mitotic spindles, and fluctuations in metaphase spindle length occurred in kinesin-8–deletion mutants. A mathematical model can explain these results. Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen.
Collapse
Affiliation(s)
- Zachary R Gergely
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309.,Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Ammon Crapo
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | | |
Collapse
|
16
|
Cytoplasmic Determination of Meiotic Spindle Size Revealed by a Unique Inter-Species Germinal Vesicle Transfer Model. Sci Rep 2016; 6:19827. [PMID: 26813698 PMCID: PMC4728387 DOI: 10.1038/srep19827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
Spindle sizes are different in diverse species and cell types. In frogs, the meiotic spindle size is positively correlated with the egg cell volume. Across species, relatively small mouse oocytes (70–80 μm) have a relatively large spindle while larger pig oocytes (about 120 μm) have a considerably smaller spindle. In this study we investigated whether species-specific oocyte spindle size was determined by cytoplasmic or nuclear factors. By exchanging the germinal vesicle between mouse and pig oocytes, we obtained two kinds of reconstructed oocytes: one with mouse ooplasm and pig GV (mCy-pGV oocyte), and the other with pig ooplasm and mouse GV (pCy-mGV oocyte). We show that the MII spindle size of the mCy-pGV oocyte is similar to that of the mouse meiotic spindle and significantly larger than that of the pig meiotic spindle. The timing of oocyte maturation also followed that of the species from which the oocyte cytoplasm arose, although some impact of the origin of the GV was observed. These data suggest that spindle size and the timing of meiotic progression are governed by cytoplasmic components rather than cytoplasmic volume and GV materials.
Collapse
|
17
|
Antenna Mechanism of Length Control of Actin Cables. PLoS Comput Biol 2015; 11:e1004160. [PMID: 26107518 PMCID: PMC4480850 DOI: 10.1371/journal.pcbi.1004160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023] Open
Abstract
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This “antenna mechanism” involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control. Based on published cell experiments, we propose a novel mechanism of length control of actin cables in budding yeast cells. The key feature of this “antenna mechanism” is negative feedback of the cable length on the activity of formins, which are proteins that attach to the growing ends of actin filaments and catalyse their polymerization. We recently showed that the protein Smy1 is critical for maintaining proper cable length in yeast cells. Smy1 proteins are delivered to the formins by directed motion of myosin motors toward the growing end, and they transiently inhibit actin cable polymerization when bound to the formins. This provides negative feedback resulting in an average rate of cable assembly that diminishes with cable length. Here we incorporate this antenna mechanism into a physical model of cable polymerization and provide experimentally testable predictions for the dependence of the length distribution of cables on the concentration of Smy1, and on mutations that affect its affinity to formins.
Collapse
|
18
|
Messin LJ, Millar JBA. Role and regulation of kinesin-8 motors through the cell cycle. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:205-13. [PMID: 25136382 DOI: 10.1007/s11693-014-9140-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Members of the kinesin-8 motor family play a central role in controlling microtubule length throughout the eukaryotic cell cycle. Inactivation of kinesin-8 causes defects in cell polarity during interphase and astral and mitotic spindle length, metaphase chromosome alignment, timing of anaphase onset and accuracy of chromosome segregation. Although the biophysical mechanism by which kinesin-8 molecules influence microtubule dynamics has been studied extensively in a variety of species, a consensus view has yet to emerge. One reason for this might be that some members of the kinesin-8 family can associate to other microtubule-associated proteins, cell cycle regulatory proteins and other kinesin family members. In this review we consider how cell cycle specific modification and its association to other regulatory proteins may modulate the function of kinesin-8 to enable it to function as a master regulator of microtubule dynamics.
Collapse
Affiliation(s)
- Liam J Messin
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry, CV4 7AL UK
| | - Jonathan B A Millar
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry, CV4 7AL UK
| |
Collapse
|
19
|
Rizk RS, Discipio KA, Proudfoot KG, Gupta ML. The kinesin-8 Kip3 scales anaphase spindle length by suppression of midzone microtubule polymerization. ACTA ACUST UNITED AC 2014; 204:965-75. [PMID: 24616221 PMCID: PMC3998799 DOI: 10.1083/jcb.201312039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitotic spindle function is critical for cell division and genomic stability. During anaphase, the elongating spindle physically segregates the sister chromatids. However, the molecular mechanisms that determine the extent of anaphase spindle elongation remain largely unclear. In a screen of yeast mutants with altered spindle length, we identified the kinesin-8 Kip3 as essential to scale spindle length with cell size. Kip3 is a multifunctional motor protein with microtubule depolymerase, plus-end motility, and antiparallel sliding activities. Here we demonstrate that the depolymerase activity is indispensable to control spindle length, whereas the motility and sliding activities are not sufficient. Furthermore, the microtubule-destabilizing activity is required to counteract Stu2/XMAP215-mediated microtubule polymerization so that spindle elongation terminates once spindles reach the appropriate final length. Our data support a model where Kip3 directly suppresses spindle microtubule polymerization, limiting midzone length. As a result, sliding forces within the midzone cannot buckle spindle microtubules, which allows the cell boundary to define the extent of spindle elongation.
Collapse
Affiliation(s)
- Rania S Rizk
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | | | | | | |
Collapse
|
20
|
Uehara R, Tsukada Y, Kamasaki T, Poser I, Yoda K, Gerlich DW, Goshima G. Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. ACTA ACUST UNITED AC 2013; 202:623-36. [PMID: 23960144 PMCID: PMC3747305 DOI: 10.1083/jcb.201302123] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A gradient of Aurora B activity determines the distribution of the microtubule depolymerase Kif2A at the central spindle and specifies the subsequent spindle structure necessary for proper cytokinesis. The central spindle is built during anaphase by coupling antiparallel microtubules (MTs) at a central overlap zone, which provides a signaling scaffold for the regulation of cytokinesis. The mechanisms underlying central spindle morphogenesis are still poorly understood. In this paper, we show that the MT depolymerase Kif2A controls the length and alignment of central spindle MTs through depolymerization at their minus ends. The distribution of Kif2A was limited to the distal ends of the central spindle through Aurora B–dependent phosphorylation and exclusion from the spindle midzone. Overactivation or inhibition of Kif2A affected interchromosomal MT length and disorganized the central spindle, resulting in uncoordinated cell division. Experimental data and model simulations suggest that the steady-state length of the central spindle and its symmetric position between segregating chromosomes are predominantly determined by the Aurora B activity gradient. On the basis of these results, we propose a robust self-organization mechanism for central spindle formation.
Collapse
Affiliation(s)
- Ryota Uehara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang H, Brust-Mascher I, Civelekoglu-Scholey G, Scholey JM. Patronin mediates a switch from kinesin-13-dependent poleward flux to anaphase B spindle elongation. J Cell Biol 2013; 203:35-46. [PMID: 24100293 PMCID: PMC3798244 DOI: 10.1083/jcb.201306001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/10/2013] [Indexed: 11/22/2022] Open
Abstract
Anaphase B spindle elongation contributes to chromosome segregation during Drosophila melanogaster embryo mitosis. We propose that this process is driven by a kinesin-5-generated interpolar microtubule (MT; ipMT) sliding filament mechanism that engages when poleward flux is turned off. In this paper, we present evidence that anaphase B is induced by the minus end-stabilizing protein patronin, which antagonizes the kinesin-13 depolymerase KLP10A at spindle poles, thereby switching off the depolymerization of the minus ends of outwardly sliding ipMTs to suppress flux. Although intact cortices, kinetochore MTs, and midzone augmentation are dispensable, this patronin-based change in ipMT minus-end dynamics is sufficient to induce the elongation of spindles capable of separating chromosomes.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Molecular and Cell Biology, University of California, Davis, Davis, CA 95616
| | | | | | | |
Collapse
|
22
|
Abstract
Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.
Collapse
Affiliation(s)
- Hui-Shun Kuan
- Program in Chemical Physics and Biofrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
23
|
Sheykhani R, Baker N, Gomez-Godinez V, Liaw LH, Shah J, Berns MW, Forer A. The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle. Cytoskeleton (Hoboken) 2013; 70:241-59. [PMID: 23475753 DOI: 10.1002/cm.21104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 11/08/2022]
Abstract
This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and unirradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and monophosphorylated myosin are associated with spindle fibers and showed that some actin and monophosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the unirradiated pole to move toward the equator until a balanced length is obtained.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Pereira AJ, Maiato H. Maturation of the kinetochore-microtubule interface and the meaning of metaphase. Chromosome Res 2012; 20:563-77. [PMID: 22801775 DOI: 10.1007/s10577-012-9298-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromosome positioning at the equator of the mitotic spindle emerges out of a relatively entropic background. At this moment, termed metaphase, all kinetochores have typically captured microtubules leading to satisfaction of the spindle-assembly checkpoint, but the cell does not enter anaphase immediately. The waiting time in metaphase is related to the kinetics of securin and cyclin B1 degradation, which trigger sister-chromatid separation and promote anaphase processivity, respectively. Yet, as judged by metaphase duration, such kinetics vary widely between cell types and organisms, with no evident correlation to ploidy or cell size. During metaphase, many animal and plant spindles are also characterized by a conspicuous "flux" activity characterized by continuous poleward translocation of spindle microtubules, which maintain steady-state length and position. Whether spindle microtubule flux plays a specific role during metaphase remains arguable. Based on known experimental parameters, we have performed a comparative analysis amongst different cell types from different organisms and show that spindle length, metaphase duration and flux velocity combine within each system to obey a quasi-universal rule. As so, knowledge of two of these parameters is enough to estimate the third. This trend indicates that metaphase duration is tuned to allow approximately one kinetochore-to-pole round of microtubule flux. We propose that the time cells spend in metaphase evolved as a quality enhancement step that allows for the uniform stabilization/correction of kinetochore-microtubule attachments, thereby promoting mitotic fidelity.
Collapse
Affiliation(s)
- António J Pereira
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | |
Collapse
|
25
|
Move in for the kill: motile microtubule regulators. Trends Cell Biol 2012; 22:567-75. [PMID: 22959403 DOI: 10.1016/j.tcb.2012.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/01/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
The stereotypical function of kinesin superfamily motors is to transport cargo along microtubules. However, some kinesins also shape the microtubule track by regulating microtubule assembly and disassembly. Recent work has shown that the kinesin-8 family of motors emerge as key regulators of cellular microtubule length. The studied kinesin-8s are highly processive motors that walk towards the microtubule plus-end. Once at plus-ends, they have complex effects on polymer dynamics; kinesin-8s either destabilize or stabilize microtubules, depending on the context. This review focuses on the mechanisms underlying kinesin-8-microtubule interactions and microtubule length control. We compare and contrast kinesin-8s with the other major microtubule-regulating kinesins (kinesin-4 and kinesin-13), to survey the current understanding of the diverse ways that kinesins control microtubule dynamics.
Collapse
|
26
|
Erent M, Drummond DR, Cross RA. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLoS One 2012; 7:e30738. [PMID: 22363481 PMCID: PMC3282699 DOI: 10.1371/journal.pone.0030738] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1) are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs). Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.
Collapse
Affiliation(s)
- Muriel Erent
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Douglas R. Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Robert A. Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
27
|
Drummond DR. Regulation of microtubule dynamics by kinesins. Semin Cell Dev Biol 2011; 22:927-34. [PMID: 22001250 DOI: 10.1016/j.semcdb.2011.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
The simple mechanistic and functional division of the kinesin family into either active translocators or non-motile microtubule depolymerases was initially appropriate but is now proving increasingly unhelpful, given evidence that several translocase kinesins can affect microtubule dynamics, whilst non-translocase kinesins can promote microtubule assembly and depolymerisation. Such multi-role kinesins act either directly on microtubule dynamics, by interaction with microtubules and tubulin, or indirectly, through the transport of other factors along the lattice to the microtubule tip. Here I review recent progress on the mechanisms and roles of these translocase kinesins.
Collapse
Affiliation(s)
- Douglas R Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
28
|
Craig EM, Dey S, Mogilner A. The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:374102. [PMID: 21862843 PMCID: PMC3168571 DOI: 10.1088/0953-8984/23/37/374102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We use linear stability analysis and numerical solutions of partial differential equations to investigate pattern formation in the one-dimensional system of short dynamic polymers and one (plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then the polymer-motor bundle has mixed polarity and homogeneous motor distribution. However, if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a graded-polarity bundle with motors at the center emerges. In the presence of the second, minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle, then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at the center and minus-end motors at the edges. We discuss modeling implications for actin-myosin fibers and in vitro and meiotic spindles.
Collapse
|
29
|
de Lartigue J, Brust-Mascher I, Scholey JM. Anaphase B spindle dynamics in Drosophila S2 cells: Comparison with embryo spindles. Cell Div 2011; 6:8. [PMID: 21477279 PMCID: PMC3080273 DOI: 10.1186/1747-1028-6-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/08/2011] [Indexed: 11/21/2022] Open
Abstract
Background In the Drosophila melanogaster syncytial blastoderm stage embryo anaphase B is initiated by a cell cycle switch in which the suppression of microtubule minus end depolymerization and spatial reorganization of the plus ends of outwardly sliding interpolar microtubules triggers spindle elongation. RNA interference in Drosophila cultured S2 cells may present a useful tool for identifying novel components of this switch, but given the diversity of spindle design, it is important to first determine the extent of conservation of the mechanism of anaphase B in the two systems. Results The basic mechanism, involving an inverse correlation between poleward flux and spindle elongation is qualitatively similar in these systems, but quantitative differences exist. In S2 cells, poleward flux is only partially suppressed and the rate of anaphase B spindle elongation increases with the extent of suppression. Also, EB1-labelled microtubule plus ends redistribute away from the poles and towards the interpolar microtubule overlap zone, but this is less pronounced in S2 cells than in embryos. Finally, as in embryos, tubulin FRAP experiments revealed a reduction in the percentage recovery after photobleaching at regions proximal to the pole. Conclusions The basic features of the anaphase B switch, involving the suppression of poleward flux and reorganization of growing microtubule plus ends, is conserved in these systems. Thus S2 cells may be useful for rapidly identifying novel components of this switch. The quantitative differences likely reflect the adaptation of embryonic spindles for rapid, streamlined mitoses.
Collapse
Affiliation(s)
- Jane de Lartigue
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
30
|
Daire V, Poüs C. Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization. Arch Biochem Biophys 2011; 510:83-92. [PMID: 21345331 DOI: 10.1016/j.abb.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 02/11/2011] [Indexed: 02/04/2023]
Abstract
Microtubule dynamics is controlled and amplified in vivo by complex sets of regulators. Among these regulatory proteins, molecular motors from the kinesin superfamily are taking an increasing importance. Here we review how microtubule disassembly or assembly into interphase microtubules, mitotic spindle or cilia may involve kinesins and how protein kinases may participate in these kinesin-dependent regulations.
Collapse
Affiliation(s)
- Vanessa Daire
- UPRES EA, Univ. Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | |
Collapse
|