1
|
Kopylova GV, Kochurova AM, Yampolskaya DS, Nefedova VV, Tsaturyan AK, Koubassova NA, Kleymenov SY, Levitsky DI, Bershitsky SY, Matyushenko AM, Shchepkin DV. Structural and Functional Properties of Kappa Tropomyosin. Int J Mol Sci 2023; 24:ijms24098340. [PMID: 37176047 PMCID: PMC10179609 DOI: 10.3390/ijms24098340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In the myocardium, the TPM1 gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the TPM1 gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.
Collapse
Affiliation(s)
- Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Anastasia M Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Daria S Yampolskaya
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Victoria V Nefedova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | | | | | - Sergey Y Kleymenov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitrii I Levitsky
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | | | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| |
Collapse
|
2
|
Binding of S100A6 to actin and the actin-tropomyosin complex. Sci Rep 2020; 10:12824. [PMID: 32733033 PMCID: PMC7393103 DOI: 10.1038/s41598-020-69752-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
S100A6 is a low molecular weight Ca2+-binding protein belonging to the S100 family. Many reports indicate that in the cell S100A6 has an influence on the organization of actin filaments, but so far no direct interaction between S100A6 and actin has been shown. In the present study we investigated binding of S100A6 to actin and the actin-tropomyosin complex. The analyses were performed on G- and F-actin and two tropomyosin isoforms-Tpm1.6 and Tpm1.8. Using purified proteins and a variety of biochemical approaches we have shown that, in a Ca2+-bound form, S100A6 directly interacts with G- and F-actin and with tropomyosin, preferentially with isoform Tpm1.8. S100A6 and tropomyosin bind to the same population of filaments and the presence of tropomyosin on the microfilament facilitates the binding of S100A6. By applying proximity ligation assay we have found that in NIH3T3 fibroblasts S100A6 forms complexes both with actin and with tropomyosin. These results indicate that S100A6, through direct interactions with actin and tropomyosin, might regulate the organization and functional properties of microfilaments.
Collapse
|
3
|
Ostrowska-Podhorodecka Z, Śliwinska M, Reisler E, Moraczewska J. Tropomyosin isoforms regulate cofilin 1 activity by modulating actin filament conformation. Arch Biochem Biophys 2020; 682:108280. [PMID: 31996302 DOI: 10.1016/j.abb.2020.108280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Tropomyosin and cofilin are involved in the regulation of actin filament dynamic polymerization and depolymerization. Binding of cofilin changes actin filaments structure, leading to their severing and depolymerization. Non-muscle tropomyosin isoforms were shown before to differentially regulate the activity of cofilin 1; products of TPM1 gene stabilized actin filaments, but products of TPM3 gene promoted cofilin-dependent severing and depolymerization. Here, conformational changes at the longitudinal and lateral interface between actin subunits resulting from tropomyosin and cofilin 1 binding were studied using skeletal actin and yeast wild type and mutant Q41C and S265C actins. Cross-linking of F-actin and fluorescence changes in F-actin labeled with acrylodan at Cys41 (in D-loop) or Cys265 (in H-loop) showed that tropomyosin isoforms differentially regulated cofilin-induced conformational rearrangements at longitudinal and lateral filament interfaces. Tryptic digestion of F-Mg-actin confirmed the differences between tropomyosin isoforms in their regulation of cofilin-dependent changes at actin-actin interfaces. Changes in the fluorescence of AEDANS attached to C-terminal Cys of actin, as well as FRET between Trp residues in actin subdomain 1 and AEDANS, did not show differences in the conformation of the C-terminal segment of F-actin in the presence of different tropomyosins ± cofilin 1. Therefore, actin's D- and H-loop are the sites involved in regulation of cofilin activity by tropomyosin isoforms.
Collapse
Affiliation(s)
- Zofia Ostrowska-Podhorodecka
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Poland; Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Małgorzata Śliwinska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Poland
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
; Department of Molecular Biology Institute, University of California, Los Angeles, USA
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Poland.
| |
Collapse
|
4
|
Karpicheva OE, Sirenko VV, Rysev NA, Simonyan AO, Borys D, Moraczewska J, Borovikov YS. Deviations in conformational rearrangements of thin filaments and myosin caused by the Ala155Thr substitution in hydrophobic core of tropomyosin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1790-1799. [PMID: 28939420 DOI: 10.1016/j.bbapap.2017.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Effects of the Ala155Thr substitution in hydrophobic core of tropomyosin Tpm1.1 on conformational rearrangements of the components of the contractile system (Tpm1.1, actin and myosin heads) were studied by polarized fluorimetry technique at different stages of the actomyosin ATPase cycle. The proteins were labelled by fluorescent probes and incorporated into ghost muscle fibres. The substitution violated the blocked and closed states of thin filaments stimulating abnormal displacement of tropomyosin to the inner domains of actin, switching actin on and increasing the relative number of the myosin heads in strong-binding state. Furthermore, the mutant tropomyosin disrupted the major function of troponin to alter the distribution of the different functional states of thin filaments. At low Ca2+ troponin did not effectively switch thin filament off and the myosin head lost the ability to drive the spatial arrangement of the mutant tropomyosin. The information about tropomyosin flexibility obtained from the fluorescent probes at Cys190 indicates that this tropomyosin is generally more rigid, that obviously prevents tropomyosin to bend and adopt the appropriate conformation required for proper regulation.
Collapse
Affiliation(s)
- Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia
| | - Vladimir V Sirenko
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia
| | - Nikita A Rysev
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia
| | - Armen O Simonyan
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia; Saint Petersburg State University, 7/9 Universitetskaya nab, 199034 St Petersburg, Russia
| | - Danuta Borys
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, 12 Ks. J. Poniatowski St., 85-671 Bydgoszcz, Poland
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, 12 Ks. J. Poniatowski St., 85-671 Bydgoszcz, Poland
| | - Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia.
| |
Collapse
|
5
|
Nikitina LV, Kopylova GV, Shchepkin DV, Nabiev SR, Bershitsky SY. Investigations of Molecular Mechanisms of Actin-Myosin Interactions in Cardiac Muscle. BIOCHEMISTRY (MOSCOW) 2016; 80:1748-63. [PMID: 26878579 DOI: 10.1134/s0006297915130106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed - two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin-myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin-myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.
Collapse
Affiliation(s)
- L V Nikitina
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, 620041, Russia.
| | | | | | | | | |
Collapse
|
6
|
Karpicheva OE, Simonyan AO, Kuleva NV, Redwood CS, Borovikov YS. Myopathy-causing Q147P TPM2 mutation shifts tropomyosin strands further towards the open position and increases the proportion of strong-binding cross-bridges during the ATPase cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:260-267. [PMID: 26708479 DOI: 10.1016/j.bbapap.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms of skeletal muscle dysfunction in congenital myopathies remain unclear. The present study examines the effect of a myopathy-causing mutation Q147P in β-tropomyosin on the position of tropomyosin on troponin-free filaments and on the actin–myosin interaction at different stages of the ATP hydrolysis cycle using the technique of polarized fluorimetry. Wild-type and Q147P recombinant tropomyosins, actin, and myosin subfragment-1 were modified by 5-IAF, 1,5-IAEDANS or FITC-phalloidin, and 1,5-IAEDANS, respectively, and incorporated into single ghost muscle fibers, containing predominantly actin filaments which were free of troponin and tropomyosin. Despite its reduced affinity for actin in co-sedimentation assay, the Q147P mutant incorporates into the muscle fiber. However, compared to wild-type tropomyosin, it locates closer to the center of the actin filament. The mutant tropomyosin increases the proportion of the strong-binding myosin heads and disrupts the co-operation of actin and myosin heads during the ATPase cycle. These changes are likely to underlie the contractile abnormalities caused by this mutation.
Collapse
Affiliation(s)
- Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia
| | - Armen O Simonyan
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia; Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St Petersburg, Russia
| | - Nadezhda V Kuleva
- Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St Petersburg, Russia
| | - Charles S Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia.
| |
Collapse
|
7
|
Śliwińska M, Moraczewska J. Structural differences between C-terminal regions of tropomyosin isoforms. PeerJ 2013; 1:e181. [PMID: 24167776 PMCID: PMC3807590 DOI: 10.7717/peerj.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/26/2013] [Indexed: 12/04/2022] Open
Abstract
Tropomyosins are actin-binding regulatory proteins which overlap end-to-end along the filament. High resolution structures of the overlap regions were determined for muscle and non-muscle tropomyosins in the absence of actin. Conformations of the junction regions bound to actin are unknown. In this work, orientation of the overlap on actin alone and on actin–myosin complex was evaluated by measuring FRET distances between a donor (AEDANS) attached to tropomyosin and an acceptor (DABMI) bound to actin’s Cys374. Donor was attached to the Cys residue introduced by site-directed mutagenesis near the C-terminal half of the overlap. The recombinant alpha-tropomyosin isoforms used in this study – skeletal muscle skTM, non-muscle TM2 and TM5a, and chimeric TM1b9a had various amino acid sequences of the N- and C-termini involved in the end-to-end overlap. The donor-acceptor distances calculated for each isoform varied between 36.4 Å and 48.1 Å. Rigor binding of myosin S1 increased the apparent FRET distances of skTM and TM2, but decreased the distances separating TM5a and TM1b9a from actin. The results show that isoform-specific sequences of the end-to-end overlaps determine orientations and dynamics of tropomyosin isoforms on actin. This can be important for specificity of tropomyosin in the regulation of actin filament diverse functions.
Collapse
Affiliation(s)
| | - Joanna Moraczewska
- Institute of Experimental Biology, Kazimierz Wielki University, Bydgoszcz, Poland
| |
Collapse
|
8
|
Karpicheva OE, Robinson P, Piers A, Borovikov YS, Redwood CS. The nemaline myopathy-causing E117K mutation in β-tropomyosin reduces thin filament activation. Arch Biochem Biophys 2013; 536:25-30. [PMID: 23689010 DOI: 10.1016/j.abb.2013.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023]
Abstract
The effect of the nemaline myopathy-causing E117K mutation in β-tropomyosin (TM) on the structure and function of this regulatory protein was studied. The E117K mutant was found to have indistinguishable actin affinity compared with wild-type (WT) and similar secondary structure as measured by circular dichroism. However the E117K mutation significantly lowered maximum activation of actomyosin ATPase. To explain the molecular mechanism of impaired ATPase activation, WT and E117K TMs were covalently labeled at Cys-36 with 5-iodoacetimido-fluorescein and incorporated into ghost muscle fibers. The changes in the position and flexibility of tropomyosin strands on the thin filaments were observed at simulation of weak and strong binding states of actomyosin at high or low Ca(2+) by polarized fluorescence techniques. The E117K mutation was found to shift the tropomyosin strands towards the closed position and restrict the tropomyosin displacement during the transformation of actomyosin from weak to strong binding state thus leading to a reduction in thin filament activation.
Collapse
Affiliation(s)
- Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
9
|
Kopylova GV, Shchepkin DV, Nikitina LV. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay. BIOCHEMISTRY (MOSCOW) 2013; 78:260-6. [DOI: 10.1134/s0006297913030073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Shchepkin D, Kopylova G, Nikitina L. Study of reciprocal effects of cardiac myosin and tropomyosin isoforms on actin–myosin interaction with in vitro motility assay. Biochem Biophys Res Commun 2011; 415:104-8. [DOI: 10.1016/j.bbrc.2011.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|