1
|
Dugina V, Vasileva M, Khromova N, Vinokurova S, Shagieva G, Mikheeva E, Galembikova A, Dunaev P, Kudlay D, Boichuk S, Kopnin P. Imbalance between Actin Isoforms Contributes to Tumour Progression in Taxol-Resistant Triple-Negative Breast Cancer Cells. Int J Mol Sci 2024; 25:4530. [PMID: 38674115 PMCID: PMC11049934 DOI: 10.3390/ijms25084530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The widespread occurrence of breast cancer and its propensity to develop drug resistance highlight the need for a comprehensive understanding of the molecular mechanisms involved. This study investigates the intricate pathways associated with secondary resistance to taxol in triple-negative breast cancer (TNBC) cells, with a particular focus on the changes observed in the cytoplasmic actin isoforms. By studying a taxol-resistant TNBC cell line, we revealed a shift between actin isoforms towards γ-actin predominance, accompanied by increased motility and invasive properties. This was associated with altered tubulin isotype expression and reorganisation of the microtubule system. In addition, we have shown that taxol-resistant TNBC cells underwent epithelial-to-mesenchymal transition (EMT), as evidenced by Twist1-mediated downregulation of E-cadherin expression and increased nuclear translocation of β-catenin. The RNA profiling analysis revealed that taxol-resistant cells exhibited significantly increased positive regulation of cell migration, hormone response, cell-substrate adhesion, and actin filament-based processes compared with naïve TNBC cells. Notably, taxol-resistant cells exhibited a reduced proliferation rate, which was associated with an increased invasiveness in vitro and in vivo, revealing a complex interplay between proliferative and metastatic potential. This study suggests that prolonged exposure to taxol and acquisition of taxol resistance may lead to pro-metastatic changes in the TNBC cell line.
Collapse
Affiliation(s)
- Vera Dugina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.D.); (G.S.)
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria Vasileva
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia; (M.V.); (N.K.); (S.V.)
| | - Natalia Khromova
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia; (M.V.); (N.K.); (S.V.)
| | - Svetlana Vinokurova
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia; (M.V.); (N.K.); (S.V.)
| | - Galina Shagieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.D.); (G.S.)
| | - Ekaterina Mikheeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (E.M.); (A.G.); (P.D.); (S.B.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (E.M.); (A.G.); (P.D.); (S.B.)
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (E.M.); (A.G.); (P.D.); (S.B.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I. M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia;
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (E.M.); (A.G.); (P.D.); (S.B.)
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow 119454, Russia
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia; (M.V.); (N.K.); (S.V.)
| |
Collapse
|
2
|
Jeruzalska E, Mazur AJ. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur J Cell Biol 2023; 102:151315. [PMID: 37099935 DOI: 10.1016/j.ejcb.2023.151315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Uncontrolled cell proliferation leads to several pathologies, including cancer. Thus, this process must be tightly regulated. The cell cycle accounts for cell proliferation, and its progression is coordinated with changes in cell shape, for which cytoskeleton reorganization is responsible. Rearrangement of the cytoskeleton allows for its participation in the precise division of genetic material and cytokinesis. One of the main cytoskeletal components is filamentous actin-based structures. Mammalian cells have at least six actin paralogs, four of which are muscle-specific, while two, named β- and γ-actin, are abundantly present in all types of cells. This review summarizes the findings that establish the role of non-muscle actin paralogs in regulating cell cycle progression and proliferation. We discuss studies showing that the level of a given non-muscle actin paralog in a cell influences the cell's ability to progress through the cell cycle and, thus, proliferation. Moreover, we elaborate on the non-muscle actins' role in regulating gene transcription, interactions of actin paralogs with proteins involved in controlling cell proliferation, and the contribution of non-muscle actins to different structures in a dividing cell. The data cited in this review show that non-muscle actins regulate the cell cycle and proliferation through varying mechanisms. We point to the need for further studies addressing these mechanisms.
Collapse
Affiliation(s)
- Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| |
Collapse
|
3
|
Alam MN, Yu JQ, Beale P, Huq F. Dose and Sequence Dependent Synergism from the Combination of Oxaliplatin with Emetine and Patulin Against Colorectal Cancer. Anticancer Agents Med Chem 2021; 20:264-273. [PMID: 31736447 DOI: 10.2174/1871520619666191021112042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Colorectal cancer is the third most commonly diagnosed cancer in the world, causing many deaths every year. Combined chemotherapy has opened a new horizon in treating colorectal cancer. The objective of the present study is to investigate the activity of oxaliplatin in combination with emetine and patulin against colorectal cancer models. METHODS IC50 values of oxaliplatin, emetine and patulin were determined against human colorectal cancer cell lines (HT-29 and Caco-2) using MTT reduction assay. Synergistic, antagonistic and additive effects from the selected binary combinations were determined as a factor of sequence of administration and added concentrations. Proteomics was carried out to identify the proteins which were accountable for combined drug action applying to the selected drug combination. RESULTS Oxaliplatin in combination with patulin produced synergism against human colorectal cancer models depending on dose and sequence of drug administration. Bolus administration of oxaliplatin with patulin proved to be the best in terms of synergistic outcome. Altered expressions of nine proteins (ACTG, PROF1, PPIA, PDIA3, COF1, GSTP1, ALDOA, TBA1C and TBB5) were considered for combined drug actions of oxaliplatin with patulin. CONCLUSION Bolus administration of oxaliplatin with patulin has the potential to be used in the treatment of colorectal cancer, and would warrant further evaluation using suitable animal model.
Collapse
Affiliation(s)
- Md Nur Alam
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Jun Q Yu
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139, Australia
| | - Fazlul Huq
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Chen S, Wang X, Yuan J, Deng C, Xie X, Kang J. Reduced levels of actin gamma 1 predict poor prognosis in ovarian cancer patients. J Obstet Gynaecol Res 2020; 46:1827-1834. [DOI: 10.1111/jog.14353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Shiyan Chen
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Xiaoxia Wang
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Jin Yuan
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Cui Deng
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Xueman Xie
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Jiali Kang
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| |
Collapse
|
5
|
Po'uha ST, Le Grand M, Brandl MB, Gifford AJ, Goodall GJ, Khew-Goodall Y, Kavallaris M. Stathmin levels alter PTPN14 expression and impact neuroblastoma cell migration. Br J Cancer 2019; 122:434-444. [PMID: 31806880 PMCID: PMC7000740 DOI: 10.1038/s41416-019-0669-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stathmin mediates cell migration and invasion in vitro, and metastasis in vivo. To investigate stathmin's role on the metastatic process, we performed integrated mRNA-miRNA expression analysis to identify pathways regulated by stathmin. METHODS MiRNA and gene arrays followed by miRNA-target-gene integration were performed on stathmin-depleted neuroblastoma cells (CtrlshRNA vs. Stmn Seq2shRNA). The expression of the predicted target PTPN14 was evaluated by RT-qPCR, western blot and immunohistochemistry. Gene-silencing technology was used to assess the role of PTPN14 on proliferation, migration, invasion and signalling pathway. RESULTS Stathmin levels modulated the expression of genes and miRNA in neuroblastoma cells, leading to a deregulation of migration and invasion pathways. Consistent with gene array data, PTPN14 mRNA and protein expression were downregulated in stathmin- depleted neuroblastoma cells and xenografts. In two independent neuroblastoma cells, suppression of PTPN14 expression led to an increase in cell migration and invasion. PTPN14 and stathmin expression did not act in a feedback regulatory loop in PTPN14- depleted cells, suggesting a complex interplay of signalling pathways. The effect of PTPN14 on YAP pathway activation was cell-type dependent. CONCLUSIONS Our findings demonstrate that stathmin levels can regulate PTPN14 expression, which can modulate neuroblastoma cell migration and invasion.
Collapse
Affiliation(s)
- Sela T Po'uha
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Miriam B Brandl
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Discipline of Medicine and Dept of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Discipline of Medicine and Dept of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia. .,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Tarasov VV, Chubarev VN, Ashraf GM, Dostdar SA, Sokolov AV, Melnikova TI, Sologova SS, Grigorevskich EM, Makhmutovа A, Kinzirsky AS, Klochkov SG, Aliev G. How Cancer Cells Resist Chemotherapy: Design and Development of Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:394-412. [DOI: 10.2174/1568026619666190305130141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/20/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Background:Resistance toward chemotherapeutics is one of the main obstacles on the way to effective cancer treatment. Personalization of chemotherapy could improve clinical outcome. However, despite preclinical significance, most of the potential markers have failed to reach clinical practice partially due to the inability of numerous studies to estimate the marker’s impact on resistance properly.Objective:The analysis of drug resistance mechanisms to chemotherapy in cancer cells, and the proposal of study design to identify bona fide markers.Methods:A review of relevant papers in the field. A PubMed search with relevant keywords was used to gather the data. An example of a search request: drug resistance AND cancer AND paclitaxel.Results:We have described a number of drug resistance mechanisms to various chemotherapeutics, as well as markers to underlie the phenomenon. We also proposed a model of a rational-designed study, which could be useful in determining the most promising potential biomarkers.Conclusion:Taking into account the most reasonable biomarkers should dramatically improve clinical outcome by choosing the suitable treatment regimens. However, determining the leading biomarkers, as well as validating of the model, is a work for further investigations.
Collapse
Affiliation(s)
- Vadim V. Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samira A. Dostdar
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Alexander V. Sokolov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Tatiana I. Melnikova
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Susanna S. Sologova
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Ekaterina M. Grigorevskich
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Alfiya Makhmutovа
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Alexander S. Kinzirsky
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Sergey G. Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| |
Collapse
|
7
|
Shakhov AS, Alieva IB. The Centrosome as the Main Integrator of Endothelial Cell Functional Activity. BIOCHEMISTRY (MOSCOW) 2017; 82:663-677. [PMID: 28601076 DOI: 10.1134/s0006297917060037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The centrosome is an intracellular structure of the animal cell responsible for organization of cytoplasmic microtubules. According to modern concepts, the centrosome is a very important integral element of the living cell whose functions are not limited to its ability to polymerize microtubules. The centrosome localization in the geometric center of the interphase cell, the high concentration of various regulatory proteins in this area, the centrosome-organized radial system of microtubules for intracellular transport by motor proteins, the centrosome involvement in the perception of external signals and their transmission - all these features make this cellular structure a unique regulation and distribution center managing dynamic morphology of the animal cell. In conjunction with the tissue-specific features of the centrosome structure, this suggests the direct involvement of the centrosome in execution of cell functions. This review discusses the involvement of the centrosome in the vital activity of endothelial cells, as well as its possible participation in the implementation of barrier function, the major function of endothelium.
Collapse
Affiliation(s)
- A S Shakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
8
|
Currier MA, Stehn JR, Swain A, Chen D, Hook J, Eiffe E, Heaton A, Brown D, Nartker BA, Eaves DW, Kloss N, Treutlein H, Zeng J, Alieva IB, Dugina VB, Hardeman EC, Gunning PW, Cripe TP. Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Mol Cancer Ther 2017; 16:1555-1565. [PMID: 28522589 DOI: 10.1158/1535-7163.mct-16-0873] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/30/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Actin filaments, with their associated tropomyosin polymers, and microtubules are dynamic cytoskeletal systems regulating numerous cell functions. While antimicrotubule drugs are well-established, antiactin drugs have been more elusive. We previously targeted actin in cancer cells by inhibiting the function of a tropomyosin isoform enriched in cancer cells, Tpm3.1, using a first-in-class compound, TR100. Here, we screened over 200 other antitropomyosin analogues for anticancer and on-target activity using a series of in vitro cell-based and biochemical assays. ATM-3507 was selected as the new lead based on its ability to disable Tpm3.1-containing filaments, its cytotoxicity potency, and more favorable drug-like characteristics. We tested ATM-3507 and TR100 alone and in combination with antimicrotubule agents against neuroblastoma models in vitro and in vivo Both ATM-3507 and TR100 showed a high degree of synergy in vitro with vinca alkaloid and taxane antimicrotubule agents. In vivo, combination-treated animals bearing human neuroblastoma xenografts treated with antitropomyosin combined with vincristine showed minimal weight loss, a significant and profound regression of tumor growth and improved survival compared with control and either drug alone. Antitropomyosin combined with vincristine resulted in G2-M phase arrest, disruption of mitotic spindle formation, and cellular apoptosis. Our data suggest that small molecules targeting the actin cytoskeleton via tropomyosin sensitize cancer cells to antimicrotubule agents and are tolerated together in vivo This combination warrants further study. Mol Cancer Ther; 16(8); 1555-65. ©2017 AACR.
Collapse
Affiliation(s)
- Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio
| | - Justine R Stehn
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Novogen Pty Ltd, Hornsby, New South Wales, Australia
| | - Ashleigh Swain
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Duo Chen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Jeff Hook
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Eleanor Eiffe
- Novogen Pty Ltd, Hornsby, New South Wales, Australia
| | - Andrew Heaton
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Novogen Pty Ltd, Hornsby, New South Wales, Australia
| | - David Brown
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Novogen Pty Ltd, Hornsby, New South Wales, Australia
| | - Brooke A Nartker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - David W Eaves
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nina Kloss
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | | | - Jun Zeng
- MedChemSoft Solutions, Wheelers Hill, Victoria, Australia
| | - Irina B Alieva
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Department of Electron Microscopy, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vera B Dugina
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Mathematical Methods in Biology, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio. .,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
9
|
Marzook NB, Latham SL, Lynn H, Mckenzie C, Chaponnier C, Grau GE, Newsome TP. Divergent roles of β- and γ-actin isoforms during spread of vaccinia virus. Cytoskeleton (Hoboken) 2017; 74:170-183. [PMID: 28218453 PMCID: PMC7162416 DOI: 10.1002/cm.21356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Abstract
Actin is a major component of the cytoskeleton and is present as two isoforms in non‐muscle cells: β‐ and γ‐cytoplasmic actin. These isoforms are strikingly conserved, differing by only four N‐terminal amino acids. During spread from infected cells, vaccinia virus (VACV) particles induce localized actin nucleation that propel virus to surrounding cells and facilitate cell‐to‐cell spread of infection. Here we show that virus‐tipped actin comets are composed of β‐ and γ‐actin. We employed isoform‐specific siRNA knockdown to examine the role of the two isoforms in VACV‐induced actin comets. Despite the high level of similarity between the actin isoforms, and their colocalization, VACV‐induced actin nucleation was dependent exclusively on β‐actin. Knockdown of β‐actin led to a reduction in the release of virus from infected cells, a phenotype dependent on virus‐induced Arp2/3 complex activity. We suggest that local concentrations of actin isoforms may regulate the activity of cellular actin nucleator complexes.
Collapse
Affiliation(s)
- N Bishara Marzook
- School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Sharissa L Latham
- Vascular Immunology Unit, Department of Pathology, School of Medical Sciences & Marie Bashir Institute, The University of Sydney, Australia
| | - Helena Lynn
- School of Life and Environmental Sciences, The University of Sydney, Australia
| | | | - Christine Chaponnier
- Department of Pathology-Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Georges E Grau
- Vascular Immunology Unit, Department of Pathology, School of Medical Sciences & Marie Bashir Institute, The University of Sydney, Australia
| | - Timothy P Newsome
- School of Life and Environmental Sciences, The University of Sydney, Australia
| |
Collapse
|
10
|
Po'uha ST, Kavallaris M. Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells. Cell Cycle 2016; 14:3908-19. [PMID: 26697841 DOI: 10.1080/15384101.2015.1120920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reorganization of the actin cytoskeleton during mitosis is crucial for regulating cell division. A functional role for γ-actin in mitotic arrest induced by the microtubule-targeted agent, paclitaxel, has recently been demonstrated. We hypothesized that γ-actin plays a role in mitosis. Herein, we investigated the effect of γ-actin in mitosis and demonstrated that γ-actin is important in the distribution of β-actin and formation of actin-rich retraction fibers during mitosis. The reduced ability of paclitaxel to induce mitotic arrest as a result of γ-actin depletion was replicated with a range of mitotic inhibitors, suggesting that γ-actin loss reduces the ability of broad classes of anti-mitotic agents to induce mitotic arrest. In addition, partial depletion of γ-actin enhanced centrosome amplification in cancer cells and caused a significant delay in prometaphase/metaphase. This prolonged prometaphase/metaphase arrest was due to mitotic defects such as uncongressed and missegregated chromosomes, and correlated with an increased presence of mitotic spindle abnormalities in the γ-actin depleted cells. Collectively, these results demonstrate a previously unknown role for γ-actin in regulating centrosome function, chromosome alignment and maintenance of mitotic spindle integrity.
Collapse
Affiliation(s)
- Sela T Po'uha
- a Children's Cancer Institute; Lowy Cancer Research Center; University of New South Wales ; Randwick , NSW , Australia
| | - Maria Kavallaris
- a Children's Cancer Institute; Lowy Cancer Research Center; University of New South Wales ; Randwick , NSW , Australia.,b ARC Center of Excellence in Convergent Bio-Nano Science and Technology; Australian Center for Nanomedicine; University of New South Wales ; Sydney , Australia
| |
Collapse
|
11
|
Abstract
Actin is the central building block of the actin cytoskeleton, a highly regulated filamentous network enabling dynamic processes of cells and simultaneously providing structure. Mammals have six actin isoforms that are very conserved and thus share common functions. Tissue-specific expression in part underlies their differential roles, but actin isoforms also coexist in various cell types and tissues, suggesting specific functions and preferential interaction partners. Gene deletion models, antibody-based staining patterns, gene silencing effects, and the occurrence of isoform-specific mutations in certain diseases have provided clues for specificity on the subcellular level and its consequences on the organism level. Yet, the differential actin isoform functions are still far from understood in detail. Biochemical studies on the different isoforms in pure form are just emerging, and investigations in cells have to deal with a complex and regulated system, including compensatory actin isoform expression.
Collapse
Affiliation(s)
- Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium.
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| |
Collapse
|
12
|
Shakhov AS, Dugina VB, Alieva IB. Reorganization of actin and microtubule systems in human vein endothelial cells during intercellular contact formation. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15040112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 2014; 171:5507-23. [PMID: 24665826 DOI: 10.1111/bph.12704] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Metastasis is responsible for the greatest number of cancer deaths. Metastatic disease, or the movement of cancer cells from one site to another, is a complex process requiring dramatic remodelling of the cell cytoskeleton. The various components of the cytoskeleton, actin (microfilaments), microtubules (MTs) and intermediate filaments, are highly integrated and their functions are well orchestrated in normal cells. In contrast, mutations and abnormal expression of cytoskeletal and cytoskeletal-associated proteins play an important role in the ability of cancer cells to resist chemotherapy and metastasize. Studies on the role of actin and its interacting partners have highlighted key signalling pathways, such as the Rho GTPases, and downstream effector proteins that, through the cytoskeleton, mediate tumour cell migration, invasion and metastasis. An emerging role for MTs in tumour cell metastasis is being unravelled and there is increasing interest in the crosstalk between key MT interacting proteins and the actin cytoskeleton, which may provide novel treatment avenues for metastatic disease. Improved understanding of how the cytoskeleton and its interacting partners influence tumour cell migration and metastasis has led to the development of novel therapeutics against aggressive and metastatic disease. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C M Fife
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia Lowy Cancer Research Centre, UNSW Australia, Randwick, NSW, Australia; Australian Centre for NanoMedicine, UNSW Australia, Sydney, NSW, Australia
| | | | | |
Collapse
|
14
|
Janes JK, Li Y, Keeling CI, Yuen MMS, Boone CK, Cooke JEK, Bohlmann J, Huber DPW, Murray BW, Coltman DW, Sperling FAH. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains. Mol Biol Evol 2014; 31:1803-15. [PMID: 24803641 PMCID: PMC4069619 DOI: 10.1093/molbev/msu135] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below −40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species.
Collapse
Affiliation(s)
- Jasmine K Janes
- Department of Biological Sciences, University of Alberta, Edmonton, AB, CanadaAlberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB, Canada
| | - Yisu Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Celia K Boone
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dezene P W Huber
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Brent W Murray
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Luo Y, Kong F, Wang Z, Chen D, Liu Q, Wang T, Xu R, Wang X, Yang JY. Loss of ASAP3 destabilizes cytoskeletal protein ACTG1 to suppress cancer cell migration. Mol Med Rep 2013; 9:387-94. [PMID: 24284654 DOI: 10.3892/mmr.2013.1831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/31/2013] [Indexed: 11/06/2022] Open
Abstract
ArfGAP with SH3 domain, ankyrin repeat and PH domain 3 (ASAP3), previously known as ACAP4, DDEFL1 and UPLC1, is considered to be an important regulator in cancer cell migration/invasion and actin-based cytoskeletal remodeling. However, the underlying mechanisms through which ASAP3 mediates these processes are not well-elucidated. This study reported that in certain types of cancer cells, loss of ASAP3 suppressed cell migration/invasion, in part by destabilizing γ-actin-1 (ACTG1), a cytoskeletal protein considered to be an integral component of the cell migratory machinery, essential for the rearrangement of the dynamic cytoskeletal networks and important in diseases, such as brain malformation, hearing loss and cancer development. The data, for the first time, link ASAP3 with ACTG1 in the regulation of cytoskeletal maintenance and cell motility.
Collapse
Affiliation(s)
- Yu Luo
- School of Nursing, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Fang Kong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Zhen Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Dahan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Qiuyan Liu
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, P.R. China
| | - Tao Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Ruian Xu
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, P.R. China
| | - Xianyuan Wang
- School of Nursing, The Third Military Medical University, Chongqing 400038, P.R. China
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
16
|
Albrethsen J, Angeletti RH, Horwitz SB, Yang CPH. Proteomics of cancer cell lines resistant to microtubule-stabilizing agents. Mol Cancer Ther 2013; 13:260-9. [PMID: 24252851 DOI: 10.1158/1535-7163.mct-13-0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the clinical success of microtubule-interacting agents (MIA), a significant challenge for oncologists is the inability to predict the response of individual patients with cancer to these drugs. In the present study, six cell lines were compared by 2D DIGE proteomics to investigate cellular resistance to the class of MIAs known as microtubule-stabilizing agents (MSA). The human lung cancer cell line A549 was compared with two drug-resistant daughter cell lines, a taxol-resistant cell line (AT12) and an epothilone B (EpoB)-resistant cell line (EpoB40). The ovarian cancer cell line Hey was compared with two drug-resistant daughter cell lines, an EpoB-resistant cell line (EpoB8) and an ixabepilone-resistant cell line (Ixab80). All 2D DIGE results were validated by Western blot analyses. A variety of cytoskeletal and cytoskeleton-associated proteins were differentially expressed in drug-resistant cells. Differential abundance of 14-3-3σ, galectin-1 and phosphorylation of stathmin are worthy of further studies as candidate predictive biomarkers for MSAs. This is especially true for galectin-1, a β-galactose-binding lectin that mediates tumor invasion and metastasis. Galectin-1 was greatly increased in EpoB- and ixabepilone-resistant cells and its suppression caused an increase in drug sensitivity in both drug-sensitive and -resistant Hey cells. Furthermore, the growth medium from resistant Hey cells contained higher levels of galectin-1, suggesting that galectin-1 could play a role in resistance to MSAs.
Collapse
Affiliation(s)
- Jakob Albrethsen
- Corresponding Author: Chia-Ping Huang Yang, Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461.
| | | | | | | |
Collapse
|