1
|
Begley MA, Solon AL, Davis EM, Sherrill MG, Ohi R, Elting MW. K-fiber bundles in the mitotic spindle are mechanically reinforced by Kif15. Mol Biol Cell 2021; 32:br11. [PMID: 34668719 PMCID: PMC8694074 DOI: 10.1091/mbc.e20-06-0426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mitotic spindle, a self-constructed microtubule-based machine, segregates chromosomes during cell division. In mammalian cells, microtubule bundles called kinetochore fibers (k-fibers) connect chromosomes to the spindle poles. Chromosome segregation thus depends on the mechanical integrity of k-fibers. Here we investigate the physical and molecular basis of k-fiber bundle cohesion. We detach k-fibers from poles by laser ablation-based cutting, thus revealing the contribution of pole-localized forces to k-fiber cohesion. We then measure the physical response of the remaining kinetochore-bound segments of the k-fibers. We observe that microtubules within ablated k-fibers often splay apart from their minus-ends. Furthermore, we find that minus-end clustering forces induced by ablation seem at least partially responsible for k-fiber splaying. We also investigate the role of the k-fiber-binding kinesin-12 Kif15. We find that pharmacological inhibition of Kif15-microtubule binding reduces the mechanical integrity of k-fibers. In contrast, inhibition of its motor activity but not its microtubule binding ability, i.e., locking Kif15 into a rigor state, does not greatly affect splaying. Altogether, the data suggest that forces holding k-fibers together are of similar magnitude to other spindle forces, and that Kif15, acting as a microtubule cross-linker, helps fortify and repair k-fibers. This feature of Kif15 may help support robust k-fiber function and prevent chromosome segregation errors.
Collapse
Affiliation(s)
- Marcus A Begley
- Department of Physics, North Carolina State University, Raleigh, NC 27607
| | - April L Solon
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Ryoma Ohi
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, NC 27607.,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
2
|
Berns MW. Laser Scissors and Tweezers to Study Chromosomes: A Review. Front Bioeng Biotechnol 2020; 8:721. [PMID: 32850689 PMCID: PMC7401452 DOI: 10.3389/fbioe.2020.00721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
Starting in 1969 laser scissors have been used to study and manipulate chromosomes in mitotic animal cells. Key studies demonstrated that using the “hot spot” in the center of a focused Gaussian laser beam it was possible to delete the ribosomal genes (secondary constriction), and this deficiency was maintained in clonal daughter cells. It wasn’t until 2020 that it was demonstrated that cells with focal-point damaged chromosomes could replicate due to the cell’s DNA damage repair molecular machinery. A series of studies leading up to this conclusion involved using cells expressing different GFP DNA damage recognition and repair molecules. With the advent of optical tweezers in 1987, laser tweezers have been used to study the behavior and forces on chromosomes in mitotic and meiotic cells. The combination of laser scissors and tweezers were employed since 1991 to study various aspects of chromosome behavior during cell division. These studies involved holding chromosomes in an optical while gradually reducing the laser power until the chromosome recovered their movement toward the cell pole. It was determined in collaborative studies with Prof. Arthur Forer from York University, Toronto, Canada, cells from diverse group vertebrate and invertebrates, that forces necessary to move chromosomes to cell poles during cell division were between 2 and 17pN, orders of magnitude below the 700 pN generally found in the literature.
Collapse
Affiliation(s)
- Michael W Berns
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Booth AJ, Yue Z, Eykelenboom JK, Stiff T, Luxton GG, Hochegger H, Tanaka TU. Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis. eLife 2019; 8:46902. [PMID: 31264963 PMCID: PMC6634967 DOI: 10.7554/elife.46902] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/01/2019] [Indexed: 01/05/2023] Open
Abstract
To ensure proper segregation during mitosis, chromosomes must be efficiently captured by spindle microtubules and subsequently aligned on the mitotic spindle. The efficacy of chromosome interaction with the spindle can be influenced by how widely chromosomes are scattered in space. Here, we quantify chromosome-scattering volume (CSV) and find that it is reduced soon after nuclear envelope breakdown (NEBD) in human cells. The CSV reduction occurs primarily independently of microtubules and is therefore not an outcome of interactions between chromosomes and the spindle. We find that, prior to NEBD, an acto-myosin network is assembled in a LINC complex-dependent manner on the cytoplasmic surface of the nuclear envelope. This acto-myosin network remains on nuclear envelope remnants soon after NEBD, and its myosin-II-mediated contraction reduces CSV and facilitates timely chromosome congression and correct segregation. Thus, we find a novel mechanism that positions chromosomes in early mitosis to ensure efficient and correct chromosome-spindle interactions.
Collapse
Affiliation(s)
- Alexander Jr Booth
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Gw Gant Luxton
- College of Biological Sciences, University of Minnesota, Minneapolis, United States
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
4
|
Fegaras E, Forer A. Chromosomes selectively detach at one pole and quickly move towards the opposite pole when kinetochore microtubules are depolymerized in Mesostoma ehrenbergii spermatocytes. PROTOPLASMA 2018; 255:1205-1224. [PMID: 29468300 DOI: 10.1007/s00709-018-1214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
In a typical cell division, chromosomes align at the metaphase plate before anaphase commences. This is not the case in Mesostoma spermatocytes. Throughout prometaphase, the three bivalents persistently oscillate towards and away from either pole, at average speeds of 5-6 μm/min, without ever aligning at a metaphase plate. In our experiments, nocodazole (NOC) was added to prometaphase spermatocytes to depolymerize the microtubules. Traditional theories state that microtubules are the producers of force in the spindle, either by tubulin depolymerizing at the kinetochore (PacMan) or at the pole (Flux). Accordingly, if microtubules are quickly depolymerized, the chromosomes should arrest at the metaphase plate and not move. However, in 57/59 cells, at least one chromosome moved to a pole after NOC treatment, and in 52 of these cells, all three bivalents moved to the same pole. Thus, the movements are not random to one pole or other. After treatment with NOC, chromosome movement followed a consistent pattern. Bivalents stretched out towards both poles, paused, detached at one pole, and then the detached kinetochores quickly moved towards the other pole, reaching initial speeds up to more than 200 μm/min, much greater than anything previously recorded in this cell. As the NOC concentration increased, the average speeds increased and the microtubules disappeared faster. As the kinetochores approached the pole, they slowed down and eventually stopped. Similar results were obtained with colcemid treatment. Confocal immunofluorescence microscopy confirms that microtubules are not associated with moving chromosomes. Thus, these rapid chromosome movements may be due to non-microtubule spindle components such as actin-myosin or the spindle matrix.
Collapse
Affiliation(s)
- Eleni Fegaras
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Arthur Forer
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
5
|
Sheykhani R, Berns M, Forer A. Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles. Cytoskeleton (Hoboken) 2017; 74:91-103. [PMID: 27935262 DOI: 10.1002/cm.21347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
Abstract
Separating anaphase chromosomes in crane-fly spermatocytes are connected by elastic tethers, as originally described by LaFountain et al. (2002): telomere-containing arm fragments severed from the arms move backwards to the partner telomeres. We have tested whether the tethers coordinate the movements of separating partner chromosomes. In other cell types anaphase chromosomes move faster, temporarily, when their kinetochore microtubules are severed. However, in crane-fly spermatocytes the chromosomes move at their usual speed when their kinetochore microtubules are severed. To test whether the absence of increased velocity is because tethers link the separating chromosomes and coordinate their movements, we cut tethers with a laser microbeam and then cut the kinetochore microtubules. After this procedure, the associated chromosome sped up, as in other cells. These results indicate that the movements of partner anaphase chromosomes in crane-fly spermatocytes are coordinated by elastic tethers connecting the two chromosomes and confirm that chromosomes speed up in anaphase when their kinetochore microtubules are severed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Biology Department, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Michael Berns
- Beckman Laser Institute and Department of Biomedical Engineering, University of California, Irvine, CA, 92617.,Department of Bioengineering and Institute for Engineering in Medicine, University of California, San Diego 92093
| | - Arthur Forer
- Biology Department, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
6
|
Greulich KO. Manipulation of cells with laser microbeam scissors and optical tweezers: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026601. [PMID: 28008877 DOI: 10.1088/1361-6633/80/2/026601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of laser microbeams and optical tweezers in a wide field of biological applications from genomic to immunology is discussed. Microperforation is used to introduce a well-defined amount of molecules into cells for genetic engineering and optical imaging. The microwelding of two cells induced by a laser microbeam combines their genetic outfit. Microdissection allows specific regions of genomes to be isolated from a whole set of chromosomes. Handling the cells with optical tweezers supports investigation on the attack of immune systems against diseased or cancerous cells. With the help of laser microbeams, heart infarction can be simulated, and optical tweezers support studies on the heartbeat. Finally, laser microbeams are used to induce DNA damage in living cells for studies on cancer and ageing.
Collapse
|
7
|
Huang C, Qian SL, Sun LY, Cheng B. Light-Emitting Diode Irradiation (640 nm) Regulates Keratinocyte Migration and Cytoskeletal Reorganization Via Hypoxia-Inducible Factor-1α. Photomed Laser Surg 2016; 34:313-20. [PMID: 27244052 DOI: 10.1089/pho.2015.4077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine the effect of light-emitting diode (LED) irradiation on the migration and proliferation of keratinocytes. BACKGROUND DATA Keratinocytes play a key role in re-epithelialization during wound healing; it is speculated that low-level LED therapy might improve keratinocyte migration and proliferation. MATERIALS AND METHODS Human keratinocyte cells (HKCs) were isolated from child or adult foreskins and irradiated with LED light with a wavelength of 640 nm and a dosage of 12 or 24 J/cm(2). Cell motility, migration, and proliferation were examined using live cell imaging, scratch assay, and a colorimetric cell counting assay, respectively. Hypoxia-inducible factor-1α (HIF-1α) protein levels were analyzed by using Western blotting. Filamentous actin (F-actin) was stained by phalloidin. YC-1 [3-(5-hydroxymethyl-2-furyl)-1-benzylindazole] was used as an HIF-1 inhibitor, and CoCl2 (cobalt chloride) and DMOG (dimethyloxaloyl glycine) are HIF-1α activators. RESULTS LED irradiation significantly promoted cell motility and migration, but did not significantly influence cell proliferation in HKCs. Furthermore, LED irradiation resulted in a reorganization of cellular F-actin and a dramatic upregulation of HIF-1α expression. Suppression of HIF-1α using the compound YC-1 prevented reorganization of the actin cytoskeleton following LED irradiation, suggesting that the effect of LED irradiation on the cytoskeleton is mediated through HIF-1α. Conversely, chemical activation of HIF-1α via DMOG or CoCl2 resulted in a reorganization of F-actin. CONCLUSIONS LED irradiation may increase keratinocyte migration via HIF-1α-dependent cytoskeletal reorganization.
Collapse
Affiliation(s)
- Chong Huang
- 1 The Second Military Medical University of People's Liberation Army , Shang Hai, P.R. China .,2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Sheng Lin Qian
- 2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Li Yue Sun
- 3 Department of Oncology, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Biao Cheng
- 2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| |
Collapse
|
8
|
Kumar G, Kajuluri LP, Gupta CM, Sahasrabuddhe AA. A twinfilin-like protein coordinates karyokinesis by influencing mitotic spindle elongation and DNA replication in Leishmania. Mol Microbiol 2016; 100:173-87. [PMID: 26713845 DOI: 10.1111/mmi.13310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 11/30/2022]
Abstract
Twinfilin is an evolutionarily conserved actin-binding protein, which regulates actin-dynamics in eukaryotic cells. Homologs of this protein have been detected in the genome of various protozoan parasites causing diseases in human. However, very little is known about their core functions in these organisms. We show here that a twinfilin homolog in a human pathogen Leishmania, primarily localizes to the nucleolus and, to some extent, also in the basal body region. In the dividing cells, nucleolar twinfilin redistributes to the mitotic spindle and remains there partly associated with the spindle microtubules. We further show that approximately 50% depletion of this protein significantly retards the cell growth due to sluggish progression of S phase of the cell division cycle, owing to the delayed nuclear DNA synthesis. Interestingly, overexpression of this protein results in significantly increased length of the mitotic spindle in the dividing Leishmania cells, whereas, its depletion adversely affects spindle elongation and architecture. Our results indicate that twinfilin controls on one hand, the DNA synthesis and on the other, the mitotic spindle elongation, thus contributing to karyokinesis in Leishmania.
Collapse
Affiliation(s)
- Gaurav Kumar
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| | - Lova P Kajuluri
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| | - Chhitar M Gupta
- Department of Biosciences, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City, Phase-I, Bangaluru, PIN-560 100, India
| | - Amogh A Sahasrabuddhe
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| |
Collapse
|
9
|
Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores. Nat Commun 2016; 7:10298. [PMID: 26728792 PMCID: PMC4728446 DOI: 10.1038/ncomms10298] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/26/2015] [Indexed: 02/04/2023] Open
Abstract
During metaphase, forces on kinetochores are exerted by k-fibres, bundles of microtubules that end at the kinetochore. Interestingly, non-kinetochore microtubules have been observed between sister kinetochores, but their function is unknown. Here we show by laser-cutting of a k-fibre in HeLa and PtK1 cells that a bundle of non-kinetochore microtubules, which we term ‘bridging fibre', bridges sister k-fibres and balances the interkinetochore tension. We found PRC1 and EB3 in the bridging fibre, suggesting that it consists of antiparallel dynamic microtubules. By using a theoretical model that includes a bridging fibre, we show that the forces at the pole and at the kinetochore depend on the bridging fibre thickness. Moreover, our theory and experiments show larger relaxation of the interkinetochore distance for cuts closer to kinetochores. We conclude that the bridging fibre, by linking sister k-fibres, withstands the tension between sister kinetochores and enables the spindle to obtain a curved shape. During metaphase, k-fibre microtubules exert force on kinetochores, but there are also non-kinetochore microtubules close to kinetochores without a known function. Here the authors show that these microtubules, which they call bridging fibres, balance interkinetochore tension by bridging sister k-fibres.
Collapse
|
10
|
Forer A, Johansen KM, Johansen J. Movement of chromosomes with severed kinetochore microtubules. PROTOPLASMA 2015; 252:775-781. [PMID: 25576435 DOI: 10.1007/s00709-014-0752-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Experiments dating from 1966 and thereafter showed that anaphase chromosomes continued to move poleward after their kinetochore microtubules were severed by ultraviolet microbeam irradiation. These observations were initially met with scepticism as they contradicted the prevailing view that kinetochore fibre microtubules pulled chromosomes to the pole. However, recent experiments using visible light laser microbeam irradiations have corroborated these earlier experiments as anaphase chromosomes again were shown to move poleward after their kinetochore microtubules were severed. Thus, multiple independent studies using different techniques have shown that chromosomes can indeed move poleward without direct microtubule connections to the pole, with only a kinetochore 'stub' of microtubules. An issue not yet settled is: what propels the disconnected chromosome? There are two not necessarily mutually exclusive proposals in the literature: (1) chromosome movement is propelled by the kinetochore stub interacting with non-kinetochore microtubules and (2) chromosome movement is propelled by a spindle matrix acting on the stub. In this review, we summarise the data indicating that chromosomes can move with severed kinetochore microtubules and we discuss proposed mechanisms for chromosome movement with severed kinetochore microtubules.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, North York, Ontario, M3J 1P3, Canada,
| | | | | |
Collapse
|
11
|
Elting MW, Hueschen CL, Udy DB, Dumont S. Force on spindle microtubule minus ends moves chromosomes. ACTA ACUST UNITED AC 2014; 206:245-56. [PMID: 25023517 PMCID: PMC4107791 DOI: 10.1083/jcb.201401091] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After the loss of continuous spindle microtubule attachment to the spindle pole, a previously undescribed mechanism of chromosome transport, powered by dynein pulling on minus ends of severed microtubules, repairs spindle architecture and integrity. The spindle is a dynamic self-assembling machine that coordinates mitosis. The spindle’s function depends on its ability to organize microtubules into poles and maintain pole structure despite mechanical challenges and component turnover. Although we know that dynein and NuMA mediate pole formation, our understanding of the forces dynamically maintaining poles is limited: we do not know where and how quickly they act or their strength and structural impact. Using laser ablation to cut spindle microtubules, we identify a force that rapidly and robustly pulls severed microtubules and chromosomes poleward, overpowering opposing forces and repairing spindle architecture. Molecular imaging and biophysical analysis suggest that transport is powered by dynein pulling on minus ends of severed microtubules. NuMA and dynein/dynactin are specifically enriched at new minus ends within seconds, reanchoring minus ends to the spindle and delivering them to poles. This force on minus ends represents a newly uncovered chromosome transport mechanism that is independent of plus end forces at kinetochores and is well suited to robustly maintain spindle mechanical integrity.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Christina L Hueschen
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Dylan B Udy
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Sophie Dumont
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
12
|
Sikirzhytski V, Magidson V, Steinman JB, He J, Le Berre M, Tikhonenko I, Ault JG, McEwen BF, Chen JK, Sui H, Piel M, Kapoor TM, Khodjakov A. Direct kinetochore-spindle pole connections are not required for chromosome segregation. ACTA ACUST UNITED AC 2014; 206:231-43. [PMID: 25023516 PMCID: PMC4107786 DOI: 10.1083/jcb.201401090] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the absence of continuous K-fiber attachment between each kinetochore and the spindle pole, one or more additional mechanisms dependent on dynein-mediated kinetochore transport exist to ensure proper chromosome segregation during mitosis. Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes′ kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells.
Collapse
Affiliation(s)
| | - Valentin Magidson
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | | | - Jie He
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | | | - Irina Tikhonenko
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | - Jeffrey G Ault
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | - Bruce F McEwen
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | | | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | | | | | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201 Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
13
|
Ferraro-Gideon J, Sheykhani R, Zhu Q, Duquette ML, Berns MW, Forer A. Measurements of forces produced by the mitotic spindle using optical tweezers. Mol Biol Cell 2013; 24:1375-86. [PMID: 23485565 PMCID: PMC3639049 DOI: 10.1091/mbc.e12-12-0901] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An optical trap is used to stop chromosome movement in spermatocytes from an insect and a flatworm and to stop pole movement in PtK cells. The forces required are much smaller than previously believed. We used a trapping laser to stop chromosome movements in Mesostoma and crane-fly spermatocytes and inward movements of spindle poles after laser cuts across Potorous tridactylus (rat kangaroo) kidney (PtK2) cell half-spindles. Mesostoma spermatocyte kinetochores execute oscillatory movements to and away from the spindle pole for 1–2 h, so we could trap kinetochores multiple times in the same spermatocyte. The trap was focused to a single point using a 63× oil immersion objective. Trap powers of 15–23 mW caused kinetochore oscillations to stop or decrease. Kinetochore oscillations resumed when the trap was released. In crane-fly spermatocytes trap powers of 56–85 mW stopped or slowed poleward chromosome movement. In PtK2 cells 8-mW trap power stopped the spindle pole from moving toward the equator. Forces in the traps were calculated using the equation F = Q′P/c, where P is the laser power and c is the speed of light. Use of appropriate Q′ coefficients gave the forces for stopping pole movements as 0.3–2.3 pN and for stopping chromosome movements in Mesostoma spermatocytes and crane-fly spermatocytes as 2–3 and 6–10 pN, respectively. These forces are close to theoretical calculations of forces causing chromosome movements but 100 times lower than the 700 pN measured previously in grasshopper spermatocytes.
Collapse
|