1
|
Brill EN, Link NG, Jackson MR, Alvi AF, Moehlenkamp JN, Beard MB, Simons AR, Carson LC, Li R, Judd BT, Brasseale MN, Berkman EP, Park RK, Cordova-Hernandez S, Hoff RY, Yager CE, Modelski MC, Nenadovich M, Sisodia D, Reames CJ, Geranios AG, Berthrong ST, Wilson AM, Tietje AH, Stobart CC. Evaluation of the Therapeutic Potential of Traditionally-Used Natural Plant Extracts to Inhibit Proliferation of a HeLa Cell Cancer Line and Replication of Human Respiratory Syncytial Virus (hRSV). BIOLOGY 2024; 13:696. [PMID: 39336123 PMCID: PMC11429219 DOI: 10.3390/biology13090696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024]
Abstract
Traditional approaches employing natural plant products to treat a wide array of ailments have been documented and described for thousands of years. However, there remains limited scientific study of the therapeutic potential or effectiveness of ethnobotanical applications. Increases in the incidence of cancer and emerging infectious diseases demonstrate a growing need for advances in the development of therapeutic options. In this study, we evaluate the therapeutic potential of aqueous extracts prepared from four plants, purple aster (Symphyotrichum novae-angliae (L.) Nemsom), common sage (Salvia lyrata (L.)), northern spicebush (Lindera benzoin (L.) Blume), and lamb's ear (Stachys byzantina (K.) Koch)) traditionally used in Native American medicine in Indiana, USA. Using a combination of cytotoxicity assays, immunofluorescence microscopy, and antiviral assays, we found that sage and spicebush extracts exhibit cytotoxic and antiproliferative effects on HeLa cell proliferation and that sage, spicebush, and aster extracts were capable of significantly inhibiting human respiratory syncytial virus (hRSV), a major respiratory pathogen of infants and the elderly. Chemical analysis of the four extracts identified four major compounds which were subsequently evaluated to identify the responsible constituents in the extracts. While none of the identified compounds were shown to induce significant impacts on HeLa cell proliferation, two of the compounds, (1S)-(-)-Borneol and 5-(hydroxymethyl)-furfural, identified in sage and spicebush, respectively, were shown to have antiviral activities. Our data suggest that several of the extracts tested exhibited either anti-proliferative or antiviral activity supporting future further analysis.
Collapse
Affiliation(s)
- Ellie N. Brill
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Natalie G. Link
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Morgan R. Jackson
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Alea F. Alvi
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Jacob N. Moehlenkamp
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Morgan B. Beard
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Adam R. Simons
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Linden C. Carson
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Ray Li
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Breckin T. Judd
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Max N. Brasseale
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Emily P. Berkman
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Riley K. Park
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Sedna Cordova-Hernandez
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Rebecca Y. Hoff
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Caroline E. Yager
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Meredith C. Modelski
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Milica Nenadovich
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Dhruvi Sisodia
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Clayton J. Reames
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Andreas G. Geranios
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Sean T. Berthrong
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Anne M. Wilson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA;
| | - Ashlee H. Tietje
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
- Interdisciplinary Program in Public Health, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA
| |
Collapse
|
2
|
Bai S, Martin-Sanchez F, Brough D, Lopez-Castejon G. Pyroptosis leads to loss of centrosomal integrity in macrophages. Cell Death Discov 2024; 10:354. [PMID: 39117604 PMCID: PMC11310477 DOI: 10.1038/s41420-024-02093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
NLRP3 forms a multiprotein inflammasome complex to initiate the inflammatory response when macrophages sense infection or tissue damage, which leads to caspase-1 activation, maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and Gasdermin-D (GSDMD) mediated pyroptosis. NLRP3 inflammasome activity must be controlled as unregulated and chronic inflammation underlies inflammatory and autoimmune diseases. Several findings uncovered that NLRP3 inflammasome activity is under the regulation of centrosome localized proteins such as NEK7 and HDAC6, however, whether the centrosome composition or structure is altered during the inflammasome activation is not known. Our data show that levels of the centrosomal scaffold protein pericentrin (PCNT) are reduced upon NLRP3 inflammasome activation via different activators in human and murine macrophages. PCNT loss occurs in the presence of membrane stabilizer punicalagin, suggesting this is not a consequence of membrane rupture. We found that PCNT loss is dependent on NLRP3 and active caspases as MCC950 and pan caspase inhibitor ZVAD prevent its degradation. Moreover, caspase-1 and GSDMD are both required for this NLRP3-mediated PCNT loss because absence of caspase-1 or GSDMD triggers an alternative regulation of PCNT via its cleavage by caspase-3 in response to nigericin stimulation. PCNT degradation occurs in response to nigericin, but also other NLRP3 activators including lysomotropic agent L-Leucyl-L-Leucine methyl ester (LLOMe) and hypotonicity but not AIM2 activation. Our work reveals that the NLRP3 inflammasome activation alters centrosome composition highlighting the need to further understand the role of this organelle during inflammatory responses.
Collapse
Affiliation(s)
- Siyi Bai
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Fatima Martin-Sanchez
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Faculty of Medicine, University of Murcia, 30120, Murcia, Spain
| | - David Brough
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Jiang W, Han L, Li G, Yang Y, Shen Q, Fan B, Wang Y, Yu X, Sun Y, He S, Du H, Miao J, Wang Y, Jia L. Baits-trap chip for accurate and ultrasensitive capture of living circulating tumor cells. Acta Biomater 2023; 162:226-239. [PMID: 36940769 DOI: 10.1016/j.actbio.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Accurate analysis of living circulating tumor cells (CTCs) plays a crucial role in cancer diagnosis and prognosis evaluation. However, it is still challenging to develop a facile method for accurate, sensitive, and broad-spectrum isolation of living CTCs. Herein, inspired by the filopodia-extending behavior and clustered surface-biomarker of living CTCs, we present a unique baits-trap chip to achieve accurate and ultrasensitive capture of living CTCs from peripheral blood. The baits-trap chip is designed with the integration of nanocage (NCage) structure and branched aptamers. The NCage structure could "trap" the extended filopodia of living CTCs and resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture (∼95% accuracy) of living CTCs independent of complex instruments. Using an in-situ rolling circle amplification (RCA) method, branched aptamers were easily modified onto the NCage structure, and served as "baits" to enhance the multi-interactions between CTC biomarker and chips, leading to ultrasensitive (99%) and reversible cell capture performance. The baits-trap chip successfully detects living CTCs in broad-spectrum cancer patients and achieves high diagnostic sensitivity (100%) and specificity (86%) of early prostate cancer. Therefore, our baits-trap chip provides a facile, accurate, and ultrasensitive strategy for living CTC isolation in clinical. STATEMENT OF SIGNIFICANCE: A unique baits-trap chip integrated with precise nanocage structure and branched aptamers was developed for the accurate and ultrasensitive capture of living CTCs. Compared with the current CTC isolation methods that are unable to distinguish CTC viability, the nanocage structure could not only "trap" the extended-filopodia of living CTCs, but also resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture of living CTCs. Additionally, benefiting from the "baits-trap" synergistic effects generated by aptamer modification and nanocage structure, our chip achieved ultrasensitive, reversible capture of living CTCs. Moreover, this work provided a facile strategy for living CTC isolation from the blood of patients with early-stage and advanced cancer, exhibiting high consistency with the pathological diagnosis.
Collapse
Affiliation(s)
- Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| | - Guorui Li
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ying Yang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Qidong Shen
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Bo Fan
- Department of Urology, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Yuchao Wang
- Department of Urology, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Xiaomin Yu
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Yan Sun
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Shengxiu He
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Huakun Du
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Jian Miao
- Hepatobiliary Pancreatic Surgery II, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Yuefeng Wang
- Hepatobiliary Pancreatic Surgery II, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| |
Collapse
|
4
|
Abstract
Apoptosis plays a key role in removing abnormal or senescent cells, maintaining the overall health of the tissue, and coordinating individual development. Recently, it has been discovered that the intracellular cytoskeleton plays a role in the apoptotic process. In addition, the regulatory role of extracellular matrix (ECM) fibrous proteins, which can be considered as the extracellular skeleton, in the process of apoptosis is rarely summarized. In this review, we collect the latest knowledge about how fibrous proteins inside and outside cells regulate apoptosis. We describe how ECM fibrous proteins participate in the regulation of death receptor and mitochondrial pathways through various signaling cascades mediated by integrins. We then explore the molecular mechanisms by which intracellular intermediate filaments regulate cell apoptosis by regulating death receptors on the cell membrane surface. Similarly, we report on novel supporting functions of microtubules in the execution phase of apoptosis and discuss their formation mechanisms. Finally, we discuss that the polypeptide fragments formed by caspase degradation of ECM fibrous proteins and intracellular intermediate filament act as local regulatory signals to play different regulatory roles in apoptosis.
Collapse
Affiliation(s)
- Jia-Hao Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Kubiak A, Chighizola M, Schulte C, Bryniarska N, Wesołowska J, Pudełek M, Lasota M, Ryszawy D, Basta-Kaim A, Laidler P, Podestà A, Lekka M. Stiffening of DU145 prostate cancer cells driven by actin filaments - microtubule crosstalk conferring resistance to microtubule-targeting drugs. NANOSCALE 2021; 13:6212-6226. [PMID: 33885607 DOI: 10.1039/d0nr06464e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX). Changes in cellular rigidity are typically attributed to remodelling of the actin filaments in the cytoskeleton. Here, we demonstrate that cell stiffening can be driven by crosstalk between actin filaments and microtubules in MTD-treated cells. Our findings improve the interpretation of biomechanical data obtained for living cells in studies of various physiological and pathological processes.
Collapse
Affiliation(s)
- Andrzej Kubiak
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang X, Guo J, Yu P, Guo L, Mao X, Wang J, Miao S, Sun J. The roles of extracellular vesicles in the development, microenvironment, anticancer drug resistance, and therapy of head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2021; 40:35. [PMID: 33478586 PMCID: PMC7819156 DOI: 10.1186/s13046-021-01840-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the main malignant tumours affecting human health, mainly due to delayed diagnosis and high invasiveness. Extracellular vehicles (EVs) are membranous vesicles released by cells into the extracellular matrix that carry important signalling molecules and stably and widely exist in various body fluids, such as plasma, saliva, cerebrospinal fluid, breast milk, urine, semen, lymphatic fluid, synovial fluid, amniotic fluid, and sputum. EVs transport almost all types of bioactive molecules (DNA, mRNAs, microRNAs (miRNAs), proteins, metabolites, and even pharmacological compounds). These "cargoes" can act on recipient cells, reshaping the surrounding microenvironment and altering distant targets, ultimately affecting their biological behaviour. The extensive exploration of EVs has deepened our comprehensive understanding of HNSCC biology. In this review, we not only summarized the effect of HNSCC-derived EVs on the tumour microenvironment but also described the role of microenvironment-derived EVs in HNSCC and discussed how the "mutual dialogue" between the tumour and microenvironment mediates the growth, metastasis, angiogenesis, immune escape, and drug resistance of tumours. Finally, the clinical application of EVS in HNSCC was assessed.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Junnan Guo
- The First Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Pingyang Yu
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Lunhua Guo
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Xionghui Mao
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Junrong Wang
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Susheng Miao
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China.
| | - Ji Sun
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
7
|
Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells 2020; 9:cells9102191. [PMID: 33003285 PMCID: PMC7600121 DOI: 10.3390/cells9102191] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in drug development, the majority of novel therapeutics have not been successfully translated into clinical applications. One of the major factors hindering their clinical translation is the lack of a safe, non-immunogenic delivery system with high target specificity upon systemic administration. In this respect, extracellular vesicles (EVs), as natural carriers of bioactive cargo, have emerged as a promising solution and can be further modified to improve their therapeutic efficacy. In this review, we provide an overview of the biogenesis pathways, biochemical features, and isolation methods of EVs with an emphasis on their many intrinsic properties that make them desirable as drug carriers. We then describe in detail the current advances in EV therapeutics, focusing on how EVs can be engineered to achieve improved target specificity, better circulation kinetics, and efficient encapsulation of therapeutic payloads. We also identify the challenges and obstacles ahead for clinical translation and provide an outlook on the future perspective of EV-based therapeutics.
Collapse
|
8
|
Snigirevskaya ES, Komissarchik YY. Ultrastructural traits of apoptosis. Cell Biol Int 2019; 43:728-738. [DOI: 10.1002/cbin.11148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ekaterina S. Snigirevskaya
- Group of Cell Membrane Ultrastructure, Institute of CytologyRussian Academy of Sciences4 Tikhoretsky Ave 194064 St. Petersburg Russia
| | - Yan Y. Komissarchik
- Group of Cell Membrane Ultrastructure, Institute of CytologyRussian Academy of Sciences4 Tikhoretsky Ave 194064 St. Petersburg Russia
| |
Collapse
|
9
|
Raiders SA, Eastwood MD, Bacher M, Priess JR. Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis. PLoS Genet 2018; 14:e1007417. [PMID: 30024879 PMCID: PMC6053125 DOI: 10.1371/journal.pgen.1007417] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
Cell death plays a major role during C. elegans oogenesis, where over half of the oogenic germ cells die in a process termed physiological apoptosis. How germ cells are selected for physiological apoptosis, or instead become oocytes, is not understood. Most oocytes produce viable embryos when apoptosis is blocked, suggesting that physiological apoptosis does not function to cull defective germ cells. Instead, cells targeted for apoptosis may function as nurse cells; the germline is syncytial, and all germ cells appear to contribute cytoplasm to developing oocytes. C. elegans has been a leading model for the genetics and molecular biology of apoptosis and phagocytosis, but comparatively few studies have examined the cell biology of apoptotic cells. We used live imaging to identify and examine pre-apoptotic germ cells in the adult gonad. After initiating apoptosis, germ cells selectively export their mitochondria into the shared pool of syncytial cytoplasm; this transport appears to use the microtubule motor kinesin. The apoptotic cells then shrink as they expel most of their remaining cytoplasm, and close off from the syncytium. Shortly thereafter the apoptotic cells restructure their microtubule and actin cytoskeletons, possibly to maintain cell integrity; the microtubules form a novel, cortical array of stabilized microtubules, and actin and cofilin organize into giant cofilin-actin rods. We discovered that some apoptotic germ cells are binucleate; the binucleate germ cells can develop into binucleate oocytes in apoptosis-defective strains, and appear capable of producing triploid offspring. Our results suggest that the nuclear layer of the germline syncytium becomes folded during mitosis and growth, and that binucleate cells arise as the layer unfolds or everts; all of the binucleate cells are subsequently removed by apoptosis. These results show that physiological apoptosis targets at least two distinct populations of germ cells, and that the apoptosis machinery efficiently recognizes cells with two nuclei. Many germ cells die by apoptosis during the development of animal oocytes, including more than half of all germ cells in the model system C. elegans. How individual germ cells are selected for apoptosis, or survival, is not known. Here we study the cell biology of apoptosis. The C. elegans gonad is a syncytium, with nearly 1000 germ “cells” connected to a shared, core cytoplasm. Once apoptosis is initiated, germ cells selectively transport their mitochondria into the gonad core, apparently using the microtubule motor protein kinesin. The apoptotic cells next constrict, expelling most of their remaining cytoplasm into the core, and close off from the gonad core. The microtubule and actin cytoskeletons are remodeled and stabilized, presumably to maintain the integrity of the dying cell. The apoptotic cells form giant cofilin-actin rods, similar to rods described in stressed cultured cells and in human myopathies and neuropathies such as Alzheimer’s and Huntington’s disease. We show that some germ cells are binucleate; these cells appear to form during germline morphogenesis, and are removed by apoptosis. These results demonstrate heterogeneity between oogenic germ cells, and show that the apoptosis machinery efficiently recognizes and removes cells with two nuclei.
Collapse
Affiliation(s)
- Stephan A. Raiders
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael D. Eastwood
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Meghan Bacher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wei J, Zhang L, Ren L, Zhang J, Yu Y, Wang J, Duan J, Peng C, Sun Z, Zhou X. Endosulfan inhibits proliferation through the Notch signaling pathway in human umbilical vein endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:26-36. [PMID: 27939630 DOI: 10.1016/j.envpol.2016.08.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Our previous research showed that endosulfan triggers the extrinsic coagulation pathway by damaging endothelial cells and causes hypercoagulation of blood. To identify the mechanism of endosulfan-impaired endothelial cells, we treated human umbilical vein endothelial cells (HUVECs) with different concentrations of endosulfan, with and without an inhibitor for Notch, N-[N-(3, 5-difluorophenacetyl)-1-alanyl]S-Phenylglycinet-butylester (DAPT, 20 μM), or a reactive oxygen species (ROS) scavenger, N-Acetyl-l-cysteine (NAC, 3 mM), for 24 h. The results showed that endosulfan could inhibit cell viability/proliferation by increasing the release of lactate dehydrogenase (LDH), arresting the cell cycle in both S and G2/M phases, and inducing apoptosis in HUVECs. We also found that endosulfan can damage microfilaments, microtubules, and nuclei; arrest mitosis; remarkably increase the expressions of Dll4, Notch1, Cleaved-Notch1, Jagged1, Notch4, Hes1, and p21; and significantly induce ROS and malondialdehyde production in HUVECs. The presence of DAPT antagonized the above changes of cycle arrest, proliferation inhibition, and expressions of Dll4, Notch1, Cleaved-Notch1, Hes1, and p21 caused by endosulfan; however, NAC could attenuate LDH release; ROS and malondialdehyde production; apoptosis; and the expression levels of Dll4, Notch1, Cleaved-Notch1, Notch4, and Hes1 induced by endosulfan. These results demonstrated that endosulfan inhibited proliferation through the Notch signaling pathway as a result of oxidative stress. In addition, endosulfan can damage the cytoskeleton and block mitosis, which may add another layer of toxic effects on endothelial cells.
Collapse
Affiliation(s)
- Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Cheng Peng
- National Research Centre for Environmental Toxicology (Entox), Member of Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, Coopers Plains, 4108, Brisbane, QLD, Australia
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China.
| |
Collapse
|
11
|
Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents. Apoptosis 2016; 22:421-436. [DOI: 10.1007/s10495-016-1337-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Wang Y, Liu Q, Xu Y, Zhang Y, Lv Y, Tan Y, Jiang N, Cao G, Ma X, Wang J, Cao Z, Yu B, Kou J. Ginsenoside Rg1 Protects against Oxidative Stress-induced Neuronal Apoptosis through Myosin IIA-actin Related Cytoskeletal Reorganization. Int J Biol Sci 2016; 12:1341-1356. [PMID: 27877086 PMCID: PMC5118780 DOI: 10.7150/ijbs.15992] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress-induced cytoskeletal dysfunction of neurons has been implicated as a crucial cause of cell apoptosis or death in the central nervous system (CNS) diseases, such as neurodegenerative and psychiatric diseases. The application of neuroprotectants rescuing the neurons from cytoskeletal damage and apoptosis can be a potential treatment for these CNS diseases. Ginsenoside Rg1 (Rg1), one of the major active components of ginseng, has been reported possessing notable neuroprotective activities. However, there is rare report about its effect on cytoskeleton and its undergoing mechanism. The current study is to reveal the regulatory effects of Rg1 on cytoskeletal and morphological lesion in oxidative stress-induced neuronal apoptosis. The results demonstrated that pre-treatment with Rg1 (0.1-10 μM) attenuated hydrogen peroxide (H2O2)-induced neuronal apoptosis and oxidative stress through reducing the intracellular reactive oxygen species (ROS) production and methane dicarboxylic aldehyde (MDA) level. The Rg1 treatment also abolished H2O2-induced morphological changes, including cell rounding, membrane blebbing, neurite retraction and nuclei condensation, which were generated by myosin IIA-actin interaction. These effects were mediated via the down-regulation of caspase-3, ROCK1 (Rho-associated kinase1) activation and myosin light chain (MLC, Ser-19) phosphorylation. Furthermore, inhibiting myosin II activity with blebbistatin partly blocked the neuroprotective effects of Rg1. The computer-aided homology modelling revealed that Rg1 preferentially positioned in the actin binding cleft of myosin IIA and might block the binding of myosin IIA to actin filaments. Accordingly, the neuroprotective mechanism of Rg1 is related to the activity that inhibits myosin IIA-actin interaction and the caspase-3/ROCK1/MLC signaling pathway. These findings put some insights into the unique neuroprotective properties of Rg1 associated with the regulation of myosin IIA-actin cytoskeletal structure under oxidative stress and provide experimental evidence for Rg1 in CNS diseases.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, China.; School of Dentistry, Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Yingqiong Xu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yanni Lv
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, China
| | - Yisha Tan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Nan Jiang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Guosheng Cao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Jingrong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| |
Collapse
|
13
|
Saas P, Daguindau E, Perruche S. Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells 2016; 34:1464-73. [PMID: 27018198 DOI: 10.1002/stem.2361] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
Abstract
The objectives of this review are to summarize the experimental data obtained using apoptotic cell-based therapies, and then to discuss future clinical developments. Indeed, apoptotic cells exhibit immunomodulatory properties that are reviewed here by focusing on more recent mechanisms. These immunomodulatory mechanisms are in particular linked to the clearance of apoptotic cells (called also efferocytosis) by phagocytes, such as macrophages, and the induction of regulatory T cells. Thus, apoptotic cell-based therapies have been used to prevent or treat experimental inflammatory diseases. Based on these studies, we have identified critical steps to design future clinical trials. This includes: the administration route, the number and schedule of administration, the appropriate apoptotic cell type to be used, as well as the apoptotic signal. We also have analyzed the clinical relevancy of apoptotic-cell-based therapies in experimental models. Additional experimental data are required concerning the treatment of inflammatory diseases (excepted for sepsis) before considering future clinical trials. In contrast, apoptotic cells have been shown to favor engraftment and to reduce acute graft-versus-host disease (GvHD) in different relevant models of transplantation. This has led to the conduct of a phase 1/2a clinical trial to alleviate GvHD. The absence of toxic effects obtained in this trial may support the development of other clinical studies based on this new cell therapy. Stem Cells 2016;34:1464-1473.
Collapse
Affiliation(s)
- Philippe Saas
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Etienne Daguindau
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France.,CHRU Besançon, Hématologie, Besançon, France
| | - Sylvain Perruche
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| |
Collapse
|