1
|
Washington RW, Knecht DA. Actin binding domains direct actin-binding proteins to different cytoskeletal locations. BMC Cell Biol 2008; 9:10. [PMID: 18269770 PMCID: PMC2275727 DOI: 10.1186/1471-2121-9-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Accepted: 02/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Filamin (FLN) and non-muscle alpha-actinin are members of a family of F-actin cross-linking proteins that utilize Calponin Homology domains (CH-domain) for actin binding. Although these two proteins have been extensively characterized, little is known about what regulates their binding to F-actin filaments in the cell. RESULTS We have constructed fusion proteins consisting of green fluorescent protein (GFP) with either the entire cross-linking protein or its actin-binding domain (ABD) and examined the localization of these fluorescent proteins in living cells under a variety of conditions. The full-length fusion proteins, but not the ABD's complemented the defects of cells lacking both endogenous proteins indicating that they are functional. The localization patterns of filamin (GFP-FLN) and alpha-actinin (GFP-alphaA) were overlapping but distinct. GFP-FLN localized to the peripheral cell cortex as well as to new pseudopods of unpolarized cells, but was observed to localize to the rear of polarized cells during cAMP and folate chemotaxis. GFP-alphaA was enriched in new pseudopods and at the front of polarized cells, but in all cases was absent from the peripheral cortex. Although both proteins appear to be involved in macropinocytosis, the association time of the GFP-probes with the internalized macropinosome differed. Surprisingly, the localization of the GFP-actin-binding domain fusion proteins precisely reflected that of their respective full length constructs, indicating that the localization of the protein was determined by the actin-binding domain alone. When expressed in a cell line lacking both filamin and alpha-actinin, the probes maintain their distinct localization patterns suggesting that they are not functionally redundant. CONCLUSION These observations strongly suggest that the regulation of the binding of these proteins to actin filaments is built into the actin-binding domains. We suggest that different actin binding domains have different affinities for F-actin filaments in functionally distinct regions of the cytoskeleton.
Collapse
Affiliation(s)
- Raymond W Washington
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
2
|
Schleicher M, Witke W, Isenberg G. Direct photoaffinity labeling of soluble GTP-binding proteins inDictyostelium discoideum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2001; 2:138-45. [PMID: 11252955 DOI: 10.1038/35052082] [Citation(s) in RCA: 788] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Filamins are large actin-binding proteins that stabilize delicate three-dimensional actin webs and link them to cellular membranes. They integrate cellular architectural and signalling functions and are essential for fetal development and cell locomotion. Here, we describe the history, structure and function of this group of proteins.
Collapse
Affiliation(s)
- T P Stossel
- Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Edmonds BT, Wyckoff J, Yeung YG, Wang Y, Stanley ER, Jones J, Segall J, Condeelis J. Elongation factor-1 alpha is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma. J Cell Sci 1996; 109 ( Pt 11):2705-14. [PMID: 8937988 DOI: 10.1242/jcs.109.11.2705] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of elongation factor-1 alpha (EF1 alpha) mRNA has been correlated with increased metastatic potential in mammary adenocarcinoma; however, this relationship was not explored at the level of protein expression. As EF1 alpha has been shown in other cell types to be a component of the actin cytoskeleton, a likely effector in metastasis, the actin binding activity of EF1 alpha from metastatic and nonmetastatic rat breast tumors and cell lines was investigated. We have shown that EF1 alpha protein is overexpressed in metastatic compared to nonmetastatic cells and whole tumors. Similarly to other EF1 alpha s, both types of tumor EF1 alpha bind to F-actin, but EF1 alpha from metastatic cells has a reduced affinity for actin. In addition, there is a high correlation between the intracellular distribution of filamentous actin and EF1 alpha in those cytoskeletal structures thought to be important for supporting the cellular motility required for metastasis. Following stimulation with EGF, there is a parallel increase in the amount of F-actin and EF1 alpha associated with the cytoskeleton. The response to EGF can be blocked with cytochalasin D indicating that the binding of EF1 alpha to the cytoskeleton is mediated by F-actin. We propose that a weakened association of EF1 alpha with actin may be related to the metastatic process via an altered organization of the actin cytoskeleton and the differential translation of mRNAs associated with the cytoskeleton.
Collapse
Affiliation(s)
- B T Edmonds
- Department of Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Soil DR. The Use of Computers in Understanding How Animal Cells Crawl. INTERNATIONAL REVIEW OF CYTOLOGY 1995. [DOI: 10.1016/s0074-7696(08)62209-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Fukui Y. Toward a new concept of cell motility: cytoskeletal dynamics in amoeboid movement and cell division. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 144:85-127. [PMID: 8320063 DOI: 10.1016/s0074-7696(08)61514-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Y Fukui
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
7
|
De Priester W. Techniques for the visualisation of cytoskeletal components in Dictyostelium discoideum. ELECTRON MICROSCOPY REVIEWS 1991; 4:343-76. [PMID: 1932587 DOI: 10.1016/0892-0354(91)90009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A general description is given of the various techniques that may be used in ultrastructural studies of the cytoskeleton. Electron microscopy of the cytoskeleton of Dictyostelium discoideum serves as a source of examples illustrating the general effects of detergent treatment and fixation techniques. A concise review is given of the structure and function of the actin microfilament system and the cytoplasmic microtubules in Dictyostelium, based on electron microscopical, light microscopical and biochemical studies. Special attention is paid to their involvement in cell movement and chemotaxis. Conventional thin sectioning, fast freezing freeze substitution, whole mounts, freeze fracturing and freeze etching and negative staining techniques are discussed and their respective advantages and limitations are mentioned. A recently developed technique, wet-cleaving, is described which gives promising results in experiments in which the inside of the plasma membrane with the adhering cortical cytoskeleton is studied. This technique may turn out to be useful in high-resolution scanning electron microscopy. A description is given of protocols that proved to be successful in the author's and other laboratories. In a few cases the feasibility of immunogold labelling (illustrated by anti-tubulin labelling of cytoplasmic microtubules) is also dealt with.
Collapse
Affiliation(s)
- W De Priester
- Department of Biology, Leiden University, The Netherlands
| |
Collapse
|
8
|
Bresnick AR, Condeelis J. Isolation of actin-binding proteins from Dictyostelium discoideum. Methods Enzymol 1991; 196:70-83. [PMID: 1851943 DOI: 10.1016/0076-6879(91)96009-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
|
10
|
Demma M, Warren V, Hock R, Dharmawardhane S, Condeelis J. Isolation of an abundant 50,000-dalton actin filament bundling protein from Dictyostelium amoebae. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39973-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Luna EJ, Condeelis JS. Actin-associated proteins in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1990; 11:328-32. [PMID: 2096013 DOI: 10.1002/dvg.1020110503] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular slime mold Dictyostelium discoideum is becoming the premier system for the explication of the biochemical and cellular events that occur during motile processes. Proteins associated with the actin cytoskeleton, in particular, appear to play key roles in cellular responses to many external stimuli. This review summarizes our present understanding of the actin-associated proteins in Dictyostelium, including their in vitro activities and their structural and/or functional analogues in mammalian cells.
Collapse
Affiliation(s)
- E J Luna
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
12
|
Dharmawardhane S, Warren V, Hall AL, Condeelis J. Changes in the association of actin-binding proteins with the actin cytoskeleton during chemotactic stimulation of Dictyostelium discoideum. CELL MOTILITY AND THE CYTOSKELETON 1989; 13:57-63. [PMID: 2543508 DOI: 10.1002/cm.970130107] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Triton-insoluble cytoskeletons were isolated from Dictyostelium discoideum AX3 cells prior to and following stimulation with 2'deoxy cyclic adenosine monophosphate (cAMP). Temporal changes in the content of actin and a 120,000 dalton actin-binding protein (ABP-120) in cytoskeletons following stimulation were monitored. Both actin and ABP-120 were incorporated into the cytoskeleton at 30-40 seconds following stimulation, which is cotemporal with the onset of pseudopod extension during stimulation of amoebae with chemoattractants. Changes in the content of total cytoskeletal protein and cytoskeletal myosin were determined under the same experimental conditions as controls. These proteins exhibited different kinetics from those of cytoskeletal ABP-120 and actin following the addition of 2'deoxy cAMP. The authors concluded that the association of ABP-120 with the cytoskeleton is regulated during cAMP signalling. Furthermore, these results indicate that ABP-120 is involved in cross-linking newly assembled actin filaments into the cytoskeleton during chemoattractant-stimulated pseudopod extension.
Collapse
Affiliation(s)
- S Dharmawardhane
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | |
Collapse
|
13
|
Noegel AA, Leiting B, Witke W, Gurniak C, Harloff C, Hartmann H, Wiesmüller E, Schleicher M. Biological roles of actin-binding proteins in Dictyostelium discoideum examined using genetic techniques. CELL MOTILITY AND THE CYTOSKELETON 1989; 14:69-74. [PMID: 2684430 DOI: 10.1002/cm.970140114] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A A Noegel
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Maekawa S, Sakai H. Isolation of 110K actin binding protein from mammalian brain and its immunocytochemical localization within cultured cells. Exp Cell Res 1988; 178:127-42. [PMID: 3137084 DOI: 10.1016/0014-4827(88)90384-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Crude extract of young rat brain forms actin-based gels upon incubation at 25 degrees C. After boiling the gelled material, a protein fraction composed mostly of a major band of 110 kDa and a minor band of 120 kDa in SDS-PAGE was obtained by hydroxyapatite column chromatography. When the same protein fraction was prepared from bovine brains using the same procedure with two additional column chromatographies, the amounts of both proteins were nearly the same. Both proteins cosedimented with actin filaments upon centrifugation. Antibody was produced in a rabbit against the bovine fraction and affinity purified using a nitrocellulose paper onto which these proteins were transferred electrophoretically. Immunoblot analysis showed that both proteins are immunologically similar, and we refer to both proteins as 110K protein, collectively. The immunoblot analysis also revealed that the 110K protein is contained in cultured cells such as BHK, 3Y1, NRK, and MDBK. Analysis of various tissue extracts showed that brain is rich in this protein but liver, kidney, and lung contain negligible amounts. Indirect immunofluorescent analysis using cells during spreading showed preferential localization in the leading edge region and no fluorescence was detected in the stress fiber. Double immunostaining using monoclonal anti-vinculin and anti-110K protein antibodies revealed that the distribution patterns of both proteins are different from each other.
Collapse
Affiliation(s)
- S Maekawa
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | |
Collapse
|
15
|
Hall AL, Schlein A, Condeelis J. Relationship of pseudopod extension to chemotactic hormone-induced actin polymerization in amoeboid cells. J Cell Biochem 1988; 37:285-99. [PMID: 3410887 DOI: 10.1002/jcb.240370304] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aggregation-competent amoeboid cells of Dictyostelium discoideum are chemotactic toward cAMP. Video microscopy and scanning electron microscopy were used to quantitate changes in cell morphology and locomotion during uniform upshifts in the concentration of cAMP. These studies demonstrate that morphological and motile responses to cAMP are sufficiently synchronous within a cell population to allow relevant biochemical analyses to be performed on large numbers of cells. Changes in cell behavior were correlated with F-actin content by using an NBD-phallacidin binding assay. These studies demonstrate that actin polymerization occurs in two stages in response to stimulation of cells with extracellular cAMP and involves the addition of monomers to the cytochalasin D-sensitive (barbed) ends of actin filaments. The second stage of actin assembly, which peaks at 60 sec following an upshift in cAMP concentration, is temporally correlated with the growth of new pseudopods. The F-actin assembled by 60 sec is localized in these new pseudopods. These results indicate that actin polymerization may constitute one of the driving forces for pseudopod extension in amoeboid cells and that nucleation sites regulating polymerization are under the control of chemotaxis receptors.
Collapse
Affiliation(s)
- A L Hall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
16
|
Schleicher M, André E, Hartmann H, Noegel AA. Actin-binding proteins are conserved from slime molds to man. DEVELOPMENTAL GENETICS 1988; 9:521-30. [PMID: 3243032 DOI: 10.1002/dvg.1020090428] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA clones encoding the actin-binding proteins alpha-actinin and severin from Dictyostelium discoideum were isolated and sequenced. Comparisons of the deduced amino acid sequences with proteins from other species showed striking similarities at distinct regions. The F-actin cross-linking molecule alpha-actinin carries two characteristic EF-hand structures highly homologous to the Ca2+-binding loops of proteins from the calmodulin superfamily. An N-terminal region that is conserved in alpha-actinin from D. discoideum and vertebrates is also related to parts of the dystrophin sequence and might represent the F-actin binding site. Severin, gelsolin, villin, and fragmin share homologous sequences that are believed to participate in the severing activity of these proteins.
Collapse
Affiliation(s)
- M Schleicher
- Max-Planck-Institute for Biochemistry, Martinsried, Federal Republic of Germany
| | | | | | | |
Collapse
|
17
|
Ogihara S, Carboni J, Condeelis J. Electron microscopic localization of myosin II and ABP-120 in the cortical actin matrix of Dictyostelium amoebae using IgG-gold conjugates. DEVELOPMENTAL GENETICS 1988; 9:505-20. [PMID: 3243031 DOI: 10.1002/dvg.1020090427] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To narrow the field of possible functions of an actin-binding protein (ABP-120) and myosin II, we have used high resolution immunocytochemistry with IgG-colloidal gold conjugates to identify the types of actin containing structures with which these proteins are associated in the isolated cell cortex. Staining for myosin II and ABP-120 is associated with distinct regions of the actin cytoskeleton in isolated cortices. Myosin II is localized to lateral arrays of filaments, where it is clustered and has a density that is unrelated to distance from the plasma membrane. Staining for myosin II is associated also with unidentified cytoplasmic vesicles. However, staining for ABP-120 is concentrated in dense networks of branched microfilaments that are adjacent to the plasma membrane or in surface projections (residual pseudopods and lamellopods). These results are consistent with a role for ABP-120 in the formation of filament networks in vivo and further suggest that networks of branched microfilaments are unlikely to participate in motility that is mediated by myosin II.
Collapse
Affiliation(s)
- S Ogihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
18
|
Condeelis J, Hall A, Bresnick A, Warren V, Hock R, Bennett H, Ogihara S. Actin polymerization and pseudopod extension during amoeboid chemotaxis. CELL MOTILITY AND THE CYTOSKELETON 1988; 10:77-90. [PMID: 3052871 DOI: 10.1002/cm.970100113] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amoebae of the cellular slime mold Dictyostelium discoideum are an excellent model system for the study of amoeboid chemotaxis. These cells can be studied as a homogeneous population whose response to chemotactic stimulation is sufficiently synchronous to permit the correlation of the changes in cell shape and biochemical events during chemotaxis. Having demonstrated this synchrony of response, we show that actin polymerization occurs in two stages during stimulation with chemoattractants. The assembly of F-actin that peaks between 40 and 60 sec after the onset of stimulation is temporally correlated with the growth of new pseudopods. F-actin, which is assembled by 60 sec after stimulation begins, is localized in the new pseudopods that are extended at this time. Both stages of actin polymerization during chemotactic stimulation involve polymerization at the barbed ends of actin filaments based on the cytochalasin sensitivity of this response. We present a hypothesis in which actin polymerization is one of the major driving forces for pseudopod extension during chemotaxis. The predictions of this model, that localized regulation of actin nucleation activity and actin filament cross-linking must occur, are discussed in the context of current models for signal transduction and of recent information regarding the types of actin-binding proteins that are present in the cell cortex.
Collapse
Affiliation(s)
- J Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | | | |
Collapse
|
19
|
Johns JA, Brock AM, Pardee JD. Colocalization of F-actin and 34-kilodalton actin bundling protein in Dictyostelium amoebae and cultured fibroblasts. CELL MOTILITY AND THE CYTOSKELETON 1988; 9:205-18. [PMID: 3284657 DOI: 10.1002/cm.970090303] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Ca2+-sensitive actin-binding protein isolated from Dictyostelium discoideum, 30,000-D protein (Fechheimer and Taylor: J. Biol. Chem. 259:4514-4520, 1984;) has recently been localized in filipodia of substrate-adhered amoebae (Fechheimer: J. Cell Biol. 104:1539-1551, 1987). We have determined that this protein has a Mr of 34,000 daltons and is strictly colocalized with actin filaments in both substrate-attached Dictyostelium amoebae and cultured fibroblasts. 3T3 fibroblasts, as well as normal and virally transformed rat kidney fibroblasts (NRK) contain a 34-kilodalton (kD) protein that cross-reacts specifically with antibody to the Dictyostelium bundling protein. Mammalian 34-kD protein is colocalized with F-actin in stress fibers and the cortical cytoskeleton in substrate-adhered fibroblasts. In substrate-adhered vegetative Dictyostelium, F-actin and 34-kD protein are concentrated in regions of the cell cortex exhibiting filipodia and membrane ridges. Multiple filipodia formed after exposure to the chemoattractant folic acid stain intensely for 34-kD protein, implying participation in the assembly of actin bundles during filipod formation. The cortex of pseudopodia also contained high concentrations of bundling protein, but pseudopod interiors did not. In contrast to vegetative Dictyostelium, F-actin and 34-kD protein were not colocalized in cells that had progressed through the developmental cycle. In fruiting bodies, 34-kD protein was detected by immunofluorescence microscopy only in prespore cells, while F-actin appeared in stalk cells and spores.
Collapse
Affiliation(s)
- J A Johns
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
20
|
Hock RS, Condeelis JS. Isolation of a 240-kilodalton actin-binding protein from Dictyostelium discoideum. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75940-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Wolosewick JJ, Condeelis J. Fine structure of gels prepared from an actin-binding protein and actin: comparison to cytoplasmic extracts and cortical cytoplasm in amoeboid cells of cortical cytoplasm in amoeboid cells of Dictyostelium discoideum. J Cell Biochem 1986; 30:227-43. [PMID: 3700494 DOI: 10.1002/jcb.240300305] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have identified the three-dimensional ultrastructure of actin gels that are formed in well-characterized cell extracts and mixtures of purified actin and the 120K actin-binding protein and compared these to the ultrastructure of the cytoplasmic matrix in regions of nonextracted Dictyostelium amoebae that are rich in actin and 120K. This ultrastructural characterization was achieved by using critical-point-dried whole-mount preparations. All three preparations--gelled extracts, purified proteins, and cortical cytoplasm--are composed of filament networks. The basic morphological feature of these networks is the presence of contacts between convergent filaments resulting in "T" or "X" shaped contacts. The finding that actin-containing gels are composed of filament networks, where the primary interaction occurs between convergent filaments, reconciles the known requirement of F actin for gelation with the amorphous appearance of these gels in thin sections. Increasing the molar ratio of 120K dimer to actin monomer increases the number of contacts between filaments per unit volume and decreases the lengths of filaments between contacts. This indicates that 120K stabilizes interactions between filaments and is consistent with biochemical evidence that 120K crosslinks actin filaments. The cortical network in situ resembles more closely networks formed in 120K-rich extracts than networks assembled in mixtures of purified 120K and actin. The heterogeneity of filament diameters and variation of network density are properties shared by extracts and the cytomatrix in situ while networks found in purified 120K-actin gels have filament diameters and densities that are more uniform. These differences are certainly due to the more complex composition of cell extracts and cortical cytoplasm as compared to that of purified 120K-actin gels.
Collapse
|
22
|
Abstract
Chemotaxis and cell motility have essential roles to play throughout the developmental cycle of the cellular slime molds. The particular emphasis of this review, however, will be on the amoeboid stages of the life cycle. The nature of the chemoattractants and their detection will be discussed as will the possible mechanisms that may account for the directed locomotion of amoebae. Intracellular chemoattractant-elicited molecular responses thought to play a role in transduction of extracellular signals into a motility response will also be examined. Furthermore, relationships of these transduction pathway components with changes in assembly states of the cytoskeletal proteins contributing to shape change and cell movement will be assessed. Theories of amoeboid movement involving these cytoskeletal proteins will be compared and discussed in terms of their relevance to cellular slime mold motility.
Collapse
|
23
|
Brown SS. A Ca2+ insensitive actin-crosslinking protein from Dicytostelium discoideum. CELL MOTILITY 1985; 5:529-43. [PMID: 3841028 DOI: 10.1002/cm.970050608] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have isolated a 30,000-dalton protein from Dictyostelium which cosedimented with and affected the low shear viscosity of actin. At low concentrations, this protein increased the low shear viscosity to greater than that of the actin control, whereas higher concentrations decreased viscosity. The viscosity decrease correlated with the formation of actin filament bundles, as seen electron microscopically. This protein resembled a previously reported actin-binding protein from Dictyostelium [Fechheimer and Taylor, 84, J Biol Chem 259:4514] in electrophoretic mobility, Stokes radius, and ability to crosslink filaments, but was shown to be different by peptide mapping, lack of immunologic crossreactivity, and lack of sensitivity to calcium.
Collapse
|
24
|
Isolation and characterization of a 30,000-dalton calcium-sensitive actin cross-linking protein from Dictyostelium discoideum. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43076-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|