1
|
Chan KMC, Son S, Schmid EM, Fletcher DA. A viral fusogen hijacks the actin cytoskeleton to drive cell-cell fusion. eLife 2020; 9:51358. [PMID: 32441254 PMCID: PMC7244324 DOI: 10.7554/elife.51358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/08/2020] [Indexed: 01/01/2023] Open
Abstract
Cell-cell fusion, which is essential for tissue development and used by some viruses to form pathological syncytia, is typically driven by fusogenic membrane proteins with tall (>10 nm) ectodomains that undergo conformational changes to bring apposing membranes in close contact prior to fusion. Here we report that a viral fusogen with a short (<2 nm) ectodomain, the reptilian orthoreovirus p14, accomplishes the same task by hijacking the actin cytoskeleton. We show that phosphorylation of the cytoplasmic domain of p14 triggers N-WASP-mediated assembly of a branched actin network. Using p14 mutants, we demonstrate that fusion is abrogated when binding of an adaptor protein is prevented and that direct coupling of the fusogenic ectodomain to branched actin assembly is sufficient to drive cell-cell fusion. This work reveals how the actin cytoskeleton can be harnessed to overcome energetic barriers to cell-cell fusion.
Collapse
Affiliation(s)
- Ka Man Carmen Chan
- UC Berkeley-UC San Francisco Graduate Group in Bioengineering, Berkeley, United States.,Department of Bioengineering & Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Sungmin Son
- Department of Bioengineering & Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Eva M Schmid
- Department of Bioengineering & Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Daniel A Fletcher
- UC Berkeley-UC San Francisco Graduate Group in Bioengineering, Berkeley, United States.,Department of Bioengineering & Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
2
|
Kandušer M, Ušaj M. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines. Expert Opin Drug Deliv 2014; 11:1885-98. [DOI: 10.1517/17425247.2014.938632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Richard JP, Leikina E, Chernomordik LV. Cytoskeleton reorganization in influenza hemagglutinin-initiated syncytium formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:450-7. [PMID: 18976631 DOI: 10.1016/j.bbamem.2008.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
Little is known about the mechanisms of cell-cell fusion in development and diseases and, especially, about fusion stages downstream of an opening of nascent fusion pore(s). Earlier works on different cell-cell fusion reactions have indicated that cytoskeleton plays important role in syncytium formation. However, due to complexity of these reactions and multifaceted contributions of cytoskeleton in cell physiology, it has remained unclear whether cytoskeleton directly drives fusion pore expansion or affects preceding fusion stages. Here we explore cellular reorganization associated with fusion pore expansion in syncytium formation using relatively simple experimental system. Fusion between murine embryonic fibroblasts NIH3T3-based cells is initiated on demand by well-characterized fusogen influenza virus hemagglutinin. We uncouple early fusion stages dependent on protein fusogens from subsequent fusion pore expansion stage and establish that the transition from local fusion to syncytium requires metabolic activity of living cells. Effective syncytium formation for cells with disorganized actin and microtubule cytoskeleton argues against hypothesis that cytoskeleton drives fusion expansion.
Collapse
Affiliation(s)
- Jean-Philippe Richard
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | | | | |
Collapse
|
4
|
Abstract
The term 'microtubule dynamics' is often used to describe assembly/disassembly characteristics of this important cytoskeletal polymer. The ability to image microtubules in live Dictyostelium cells has revealed additional dynamic components, acting on the individual assembled tubules. At least two separate forces are involved, in generation of pronounced bending motions during interphase and in creating tension with the cell cortex. This review attempts to summarize what is known about conventional microtubule dynamics in Dictyostelium as well as to describe these two additional motility components. We propose that these forces are important both in maintaining the overall structure of the microtubule array and in supporting intracellular traffic.
Collapse
Affiliation(s)
- Michael P Koonce
- Division of Molecular Medicine, Wadsworth Center, Empire State of Plaza, P.O. Box 509, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
5
|
Faruki S, Cole RW, Rieder CL. Separating centrosomes interact in the absence of associated chromosomes during mitosis in cultured vertebrate cells. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:107-21. [PMID: 12112153 DOI: 10.1002/cm.10036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We detail here how "free" centrosomes, lacking associated chromosomes, behave during mitosis in PtK(2) homokaryons stably expressing GFP-alpha-tubulin. As free centrosomes separate during prometaphase, their associated astral microtubules (Mts) interact to form a spindle-shaped array that is enriched for cytoplasmic dynein and Eg5. Over the next 30 min, these arrays become progressively depleted of Mts until the two centrosomes are linked by a single bundle, containing 10-20 Mts, that persists for > 60 min. The overlapping astral Mts within this bundle are loosely organized, and their plus ends terminate near its midzone, which is enriched for an ill-defined matrix material. At this time, the distance between the centrosomes is not defined by external forces because these organelles remain stationary when the bundle connecting them is severed by laser microsurgery. However, since the centrosomes move towards one another in response to monastrol treatment, the kinesin-like motor protein Eg5 is involved. From these results, we conclude that separating asters interact during prometaphase of mitosis to form a spindle-shaped Mt array, but that in the absence of chromosomes this array is unstable. An analysis of the existing data suggests that the stabilization of spindle Mts during mitosis in vertebrates does not involve the chromatin (i.e., the RCC1/RanGTP pathway), but instead some other chromosomal component, e.g., kinetochores.
Collapse
Affiliation(s)
- Shamsa Faruki
- Division of Molecular Medicine, Wadsworth Center for Laboratories and Research, Empire State Plaza, Albany, New York, USA
| | | | | |
Collapse
|
6
|
SUZUKI H, OGASAWARA I, TAKAHASHI H, IMADA Y, TOYOKAWA K. Electrofusion of Blastomeres of Hamster 2-Cell Embryos and Dynamic Changes of the Cytoskeletal Distribution. J Reprod Dev 2001. [DOI: 10.1262/jrd.47.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hiroyuki SUZUKI
- Faculty of Agriculture and Life Sciences, Hirosaki University
| | - Ikuko OGASAWARA
- Faculty of Agriculture and Life Sciences, Hirosaki University
| | | | | | - Koji TOYOKAWA
- Faculty of Agriculture and Life Sciences, Hirosaki University
| |
Collapse
|
7
|
Abstract
Diverse enveloped viruses enter host cells by fusing their envelopes with cell membranes. The mechanisms of merger of lipid bilayers of two membranes mediated by influenza hemagglutinin and other viral fusion proteins apparently involve local lipidic connections that evolve into a bilayer septum in which a pore forms and expands.
Collapse
Affiliation(s)
- G B Melikyan
- Dept of Molecular Biophysics and Physiology, Rush Medical College, Chicago, IL 60612, USA.
| | | |
Collapse
|
8
|
Rieder CL, Khodjakov A, Paliulis LV, Fortier TM, Cole RW, Sluder G. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc Natl Acad Sci U S A 1997; 94:5107-12. [PMID: 9144198 PMCID: PMC24639 DOI: 10.1073/pnas.94.10.5107] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1996] [Accepted: 02/18/1997] [Indexed: 02/04/2023] Open
Abstract
During mitosis an inhibitory activity associated with unattached kinetochores prevents PtK1 cells from entering anaphase until all kinetochores become attached to the spindle. To gain a better understanding of how unattached kinetochores block the metaphase/anaphase transition we followed mitosis in PtK1 cells containing two independent spindles in a common cytoplasm. We found that unattached kinetochores on one spindle did not block anaphase onset in a neighboring mature metaphase spindle 20 microm away that lacked unattached kinetochores. As in cells containing a single spindle, anaphase onset occurred in the mature spindles x = 24 min after the last kinetochore attached regardless of whether the adjacent immature spindle contained one or more unattached kinetochores. These findings reveal that the inhibitory activity associated with an unattached kinetochore is functionally limited to the vicinity of the spindle containing the unattached kinetochore. We also found that once a mature spindle entered anaphase the neighboring spindle also entered anaphase x = 9 min later regardless of whether it contained monooriented chromosomes. Thus, anaphase onset in the mature spindle catalyzes a "start anaphase" reaction that spreads globally throughout the cytoplasm and overrides the inhibitory signal produced by unattached kinetochores in an adjacent spindle. Finally, we found that cleavage furrows often formed between the two independent spindles. This reveals that the presence of chromosomes and/or a spindle between two centrosomes is not a prerequisite for cleavage in vertebrate somatic cells.
Collapse
Affiliation(s)
- C L Rieder
- Laboratory of Cell Regulation, Wadsworth Center, P.O. Box 509, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
9
|
Jongkind JF, Visser P, Verkerk A. Cell fusion in space: plasma membrane fusion in human fibroblasts during short term microgravity. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1996; 17:21-25. [PMID: 11538619 DOI: 10.1016/0273-1177(95)00608-h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During short-term microgravity in sounding rocket experiments (6 min.) the cytoskeleton undergoes changes and therefore it is possible that cell processes which are dependent on the structure and function of the cytoskeleton are influenced. A cell fusion experiment, initiated by a short electric pulse, was chosen as a model experiment for this sounding rocket experiment. Confluent monolayers of primary human skin fibroblasts, grown on coverslips, were mounted between two electrodes (distance 0.5 cm) and fused by discharging a capacitor (68 micro F; 250 V; 10 msec) in a low conductive medium. During a microgravity experiment in which nearly all the requirements for an optimal result were met (only the recovery of the payload was delayed) results were found that indicated that microgravity during 6 minutes did not influence cell fusion since the percentage of fused products did not change during microgravity. Within the limits of discrimination using morphological assays microgravity has no influence on the actin/cortical cytoskeleton just after electrofusion.
Collapse
Affiliation(s)
- J F Jongkind
- Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
10
|
Finch RA, Chang DC, Chan PK. GTP gamma S restores nucleophosmin (NPM) localization to nucleoli of GTP-depleted HeLa cells. Mol Cell Biochem 1995; 146:171-8. [PMID: 7565647 DOI: 10.1007/bf00944610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies showed that localization of nucleophosmin/B23 (NPM) to nucleoli requires adequate cellular GTP levels (Finch et al., J Biol Chem 268, 5823-5827, 1993). In order to study whether hydrolysis of GTP plays a role in NPM localization, we introduced a nonhydrolyzable GTP analog into HeLa cells. Cells were first depleted of GTP with the IMP dehydrogenase inhibitor, mycophenolic acid (MA), to induce translocation of NPM from the nucleoli to the nucleoplasm. Non-hydrolyzable GTP analogs were then introduced into cells by electroporation. We found that introduction of the non-hydrolyzable analog, GTP gamma S, was effective in restoring NPM localization to nucleoli. Cells incubated in medium containing G-nucleotides without electroporation showed no effect. To reduce the possibility that cells use guanine from degraded nucleotide to supplement GTP pools via salvage pathways, experiments were also performed in the presence of (6-mercaptopurine) 6MP, a competitive inhibitor of the salvage enzyme, HGPRT (hypoxanthine guanine phosphoribosyl transferase), in addition to MA. Under these conditions, introduction of GTP gamma S still effectively restored the localization of NPM into nucleoli. This study demonstrates that electroporation can be used effectively to introduce nucleotides into cultured cells without excessive loss of viability. Our results also indicate that the GTP dependent localization of NPM to the nucleoli may not require GTP hydrolysis.
Collapse
Affiliation(s)
- R A Finch
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
11
|
Eskelinen S, Lehto VP. Induction of cell fusion in cultured fibroblasts and epithelial cells by microinjection of EGTA, GTP gamma S and antifodrin antibodies. FEBS Lett 1994; 339:129-33. [PMID: 8313961 DOI: 10.1016/0014-5793(94)80399-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CaCl2, EGTA, GTP gamma S and anti-alpha-fodrin antibodies were injected into fibroblast-like IMR-33 cells and Madin-Darby bovine kidney (MDBK) epithelial cells cultured both in the presence and absence of cycloheximide and fetal calf serum. EGTA, GTP gamma S antifodrin antibody induced fusion of MDBK cells within one hour after injection. The cells formed polykaryons with up to 15 nuclei, reaching an average fusion index of 20%. IMR-33 cells fused at a slower kinetics and only upon injection of GTP gamma S or antifodrin antibodies. No fusions were seen in serum-deprived, quiescent cells. On the other hand, cycloheximide treatment did not prevent the fusions. The results show that cells can be induced to fuse by using agents that interfere with the regulation of the G-proteins, intracellular calcium level or membrane skeleton. We suggest that the putative fusogens are resident proteins of the plasma membrane which become exposed upon destabilization of the membrane skeleton.
Collapse
Affiliation(s)
- S Eskelinen
- Biocenter, University of Oulu, Kajaanintie 52D, Oulu, Finland
| | | |
Collapse
|
12
|
Yogev D, Todorov AT, Qi P, Fendler JH, Rodziewicz GS. Laser-induced reconnection of severed axons. Biochem Biophys Res Commun 1991; 180:874-80. [PMID: 1953757 DOI: 10.1016/s0006-291x(05)81146-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After their axons have been severed, nerve cells can achieve functional recovery either by regrowth of the injured cells or by direct repair of the injured cell at the site of injury. Direct repair of a severed axon promises the advantages of preserving the viability and existing connections of the axon distal to the injury. We report here the first successful axon reconnection in the earthworm (Lumbricus terrestris) medial giant axon (MGA) in vitro system (1) by the application of well-focused 15 nsec, 5 to 50 muJ/pulse, 308 nm laser pulses. Axon reconnection is documented by light and electron microscopy, as well as by transfer of the iontophoretically injected fluorescent dye, Lucifer Yellow, across the reconnected MGA segments.
Collapse
Affiliation(s)
- D Yogev
- Department of Chemistry, Syracuse University, New York 13244
| | | | | | | | | |
Collapse
|