1
|
MacFarlane ER, Donaldson PJ, Grey AC. UV light and the ocular lens: a review of exposure models and resulting biomolecular changes. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1414483. [PMID: 39301012 PMCID: PMC11410779 DOI: 10.3389/fopht.2024.1414483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
UV light is known to cause damage to biomolecules in living tissue. Tissues of the eye that play highly specialised roles in forming our sense of sight are uniquely exposed to light of all wavelengths. While these tissues have evolved protective mechanisms to resist damage from UV wavelengths, prolonged exposure is thought to lead to pathological changes. In the lens, UV light exposure is a risk factor for the development of cataract, which is a condition that is characterised by opacity that impairs its function as a focusing element in the eye. Cataract can affect spatially distinct regions of the lens. Age-related nuclear cataract is the most prevalent form of cataract and is strongly associated with oxidative stress and a decrease in the antioxidant capacity of the central lens region. Since UV light can generate reactive oxygen species to induce oxidative stress, its effects on lens structure, transparency, and biochemistry have been extensively investigated in animal models in order to better understand human cataract aetiology. A review of the different light exposure models and the advances in mechanistic understanding gained from these models is presented.
Collapse
Affiliation(s)
- Emily R MacFarlane
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Liu S, Hu C, Luo Y, Yao K. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract. Epigenomics 2020; 12:771-788. [PMID: 32516005 DOI: 10.2217/epi-2019-0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate the possible epigenetic pathogenesis of sporadic congenital cataract. Materials & methods: We conducted whole genome bisulfite sequencing on peripheral blood from sporadic binocular or monocular congenital cataract patients and cataract-free participants. Results: We found massive differentially methylated regions within the whole genomes between any two groups. Meanwhile, we identified five genes (ACTN4, ACTG1, TUBA1A, TUBA1C, TUBB4B) for the binocular and control groups and TUBA1A for the monocular and control groups as the core differentially methylated region-related genes. The proteins encoded by these core genes are involved in building cytoskeleton and intercellular junctions. Conclusion: Changes in the methylation levels of core genes may disturb the function of cytoskeleton and intercellular junctions, eventually leading to sporadic congenital cataract.
Collapse
Affiliation(s)
- Siyu Liu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Chenyang Hu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Yueqiu Luo
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Ke Yao
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| |
Collapse
|
3
|
Bråthen M, Bånrud H, Berg K, Moan J. Induction of Multinucleated Cells Caused by UVA Exposure in Different Stages of the Cell Cycle. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710620iomccb2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Abstract
Epidemiological studies have indicated that ultraviolet radiation (UVR) is one of the main factors leading to senile cataract formation. We investigated morphological changes in the eye lens caused by UVR-A. Twenty three pairs of lenses obtained from 23 one-year-old calves were used for this study. For each pair, one lens was exposed to 44 J/m(2) UVR in the 365 nm wavelength region while the contralateral lens was not exposed and served as a control. The lenses were placed in specially designed organ culture containers for pre-incubation. Lenses were exposed to UVR after one day in culture. After irradiation, lens optical quality was monitored throughout additional 15 days of the culture period and lenses were taken for morphological analysis by scanning electron microscopy. Damage to lens optical quality was evident as early as day 8 after the irradiation and increased with time in culture. We found irregularity of fiber morphology in lenses exposed to UV-A irradiation (but not in control lenses), similar to that reported previously for aged lenses. At the end of the culture period (day 16), lens fiber membranes also showed holes in fiber membranes. We conclude that UVR-A caused damage to cell membranes of the lens and alterations in lens optics, which may subsequently lead to senile cataract formation.
Collapse
Affiliation(s)
- Naiel Azzam
- B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 7 Efron St., P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
5
|
Boileau TWM, Bray TM, Bomser JA. Ultraviolet radiation modulates nuclear factor kappa B activation in human lens epithelial cells. J Biochem Mol Toxicol 2004; 17:108-13. [PMID: 12717744 DOI: 10.1002/jbt.10067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to ultraviolet radiation (UVR) is a known risk factor for cataract, but the molecular mechanisms involved have not been elucidated. We hypothesized that exposure to UVR would modulate the activation of nuclear factor kappa-B (NF-kappa B) within the human lens epithelium, since NF-kappa B is a key regulator of cellular responses to UVR stress in other cell types. Human lens epithelial (HLE) cells were exposed to acute physiological doses of ultraviolet A (UVAR), B (UVBR), C (UVCR) radiation, or interleukin-1 beta (IL-1 beta) and NF-kappa B activation was measured by electrophoretic shift assay (EMSA). Phosphorylation of I kappa B in response to UVAR was measured by Western blotting. Irradiation of HLE cells with UVAR (0-1100 J/m(2)) did not reduce cell survival, while UVBR (400-1600 J/m(2)) and UVCR (300-900 J/m(2)) significantly reduced HLE cell survival. EMSA analysis of HLE nuclear proteins indicated activation of NF-kappa B, but not activator protein-1 (AP-1), by UVAR. The effects of UVBR and UVCR were less pronounced. Exposure of HLE cells to UVAR (0-900 J/m(2)) followed by a 30-min incubation resulted in a dose-dependent activation of NF-kappa B. UVAR-induced NF-kappa B activation in HLE cells was evident 10 min postirradiation, maximal at 60 min and returned to control levels by 120 min. Western blot analysis of phosphorylation of the NF-kappa B inhibitory protein, I kappa B, revealed that UVAR activates NF-kappa B via a mechanism involving the phosphorylation of I kappa B-alpha; this effect was dose-dependent. Supershift analysis demonstrated that UVAR and IL-1 beta activate the transcriptionally active p65/p50 NF-kappa B dimer. These studies demonstrate that UVAR activates NF-kappa B in HLE cells in a time- and dose-dependent manner via signaling through I kappa B-alpha. The activation of NF-kappa B in HLE cells by UVAR may have implications for the development and progression of cataract and other related ocular disorders.
Collapse
Affiliation(s)
- Thomas W-M Boileau
- Department of Human Nutrition, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
6
|
Giblin FJ, Leverenz VR, Padgaonkar VA, Unakar NJ, Dang L, Lin LR, Lou MF, Reddy VN, Borchman D, Dillon JP. UVA Light In vivo Reaches the Nucleus of the Guinea Pig Lens and Produces Deleterious, Oxidative Effects. Exp Eye Res 2002. [DOI: 10.1006/exer.2002.2039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Lo WK, Wen XJ, Zhou C. Regional differences in actin stability in the rat lens as visualized by immunofluorescence labeling under the influence of pH. Exp Eye Res 2000; 71:323-7. [PMID: 10973741 DOI: 10.1006/exer.2000.0881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Bråthen M, Bånrud H, Berg K, Moan J. Induction of multinucleated cells caused by UVA exposure in different stages of the cell cycle. Photochem Photobiol 2000; 71:620-6. [PMID: 10818793 DOI: 10.1562/0031-8655(2000)071<0620:iomccb>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fibroblasts of the line 3T3 from swiss albino mice were exposed to ultraviolet A (UVA) irradiation. The cells were synchronized by treatment with nocodazole and mitotic shake-off, and then exposed to UVA irradiation in different stages of the cell cycle. Their photosensitivity varied through the cell cycle, being greatest in the G2 phase. UVA irradiation was found to induce the formation of multinucleated cells. Cells in the G1 phase were found to be most prone to multinucleation 15 min after UVA irradiation, while cells exposed to UVA irradiation in S and G2 phases contained the largest fractions of multinucleated cells 24 h after treatment. The present results indicate that multinucleated cells are formed by fusion of two or more cells shortly after UVA irradiation of early G1 cells, while impairment of cytokinesis is a possible explanation for the delayed formation of multinucleated cells after irradiation in S and G2.
Collapse
Affiliation(s)
- M Bråthen
- Institute for Cancer Research, Montebello, Oslo, Norway
| | | | | | | |
Collapse
|
9
|
Mizoguchi T, Maeda I, Yagi K, Kador PF. Formation of lens aldose reductase mixed disulfides with GSH by UV irradiation and its proteolysis by lens calpain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:481-6. [PMID: 10352722 DOI: 10.1007/978-1-4615-4735-8_60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- T Mizoguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | |
Collapse
|
10
|
Tupet A, Lebreton-De Coster C, Dubertret L, Coulomb B. Low doses of ultraviolet A radiation stimulate adhesion of human dermal fibroblasts by integrins in a protein kinase C-dependent pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1999; 49:150-5. [PMID: 10392464 DOI: 10.1016/s1011-1344(99)00049-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this work, we have studied the modulation of fibroblast-extracellular matrix interactions by physiological doses of ultraviolet A (UV-A) radiation using an adhesion assay on collagen. We have shown that low doses of UV-A (20 kJ/m2) stimulate fibroblast adhesion while higher doses (100 and 200 kJ/m2) inhibit it. By measurement of the thiobarbituric acid reactive substances (TBARS) and use of the chain-breaking antioxidant vitamin E, no role of lipid peroxidation can be detected in these effects. By incubating fibroblasts with a specific protein kinase C (PKC) inhibitor, GF109203X, we have demonstrated that the stimulation of the adhesion by low doses of UV-A involves, at least in part, a PKC-dependent mechanism. In addition, using function-blocking antibodies of alpha 1, alpha 2 or alpha 5 integrin chains involved in extracellular matrix anchorage, we have shown that they decrease the stimulation of adhesion following low doses of UV-A radiation, demonstrating the involvement of these three integrin chains in this UV-A effect. In parallel, 20 kJ/M2 of UV-A are found to rapidly stimulate membrane expression of alpha 1, alpha 2 and alpha 5 integrin chains. This work, which underlines the involvement of integrins in UV-A effects, contributes to the evaluation of the mechanisms by which cell-matrix interactions modulate cell behaviour.
Collapse
Affiliation(s)
- A Tupet
- Institut de Recherche sur la Peau, INSERM U. 312, Hôpital Saint Louis, Paris, France
| | | | | | | |
Collapse
|
11
|
Andley UP, Song Z, Wawrousek EF, Bassnett S. The molecular chaperone alphaA-crystallin enhances lens epithelial cell growth and resistance to UVA stress. J Biol Chem 1998; 273:31252-61. [PMID: 9813033 DOI: 10.1074/jbc.273.47.31252] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alphaA-Crystallin (alphaA) is a member of the small heat shock protein (sHSP) family and has the ability to prevent denatured proteins from aggregating in vitro. Lens epithelial cells express relatively low levels of alphaA, but in differentiated fiber cells, alphaA is the most abundant soluble protein. The lenses of alphaA-knock-out mice develop opacities at an early age, implying a critical role for alphaA in the maintenance of fiber cell transparency. However, the function of alpha-crystallin in the lens epithelium is unknown. To investigate the physiological function of alphaA in lens epithelial cells, we used the following two systems: alphaA knock-out (alphaA(-/-)) mouse lens epithelial cells and human lens epithelial cells that overexpress alphaA. The growth rate of alphaA(-/-) mouse lens epithelial cells was reduced by 50% compared with wild type cells. Cell cycle kinetics, measured by fluorescence-activated cell sorter analysis of propidium iodide-stained cells, indicated a relative deficiency of alphaA(-/-) cells in the G2/M phases. Exposure of mouse lens epithelial cells to physiological levels of UVA resulted in an increase in the number of apoptotic cells in the cultures. Four hours after irradiation the fraction of apoptotic cells in the alphaA(-/-) cultures was increased 40-fold over wild type. In cells lacking alphaA, UVA exposure modified F-actin, but actin was protected in cells expressing alphaA. Stably transfected cell lines overexpressing human alphaA were generated by transfecting extended life span human lens epithelial cells with the mammalian expression vector construct pCI-neoalphaA. Cells overexpressing alphaA were resistant to UVA stress, as determined by clonogenic survival. alphaA remained cytoplasmic after exposure to either UVA or thermal stress indicating that, unlike other sHSPs, the protective effect of alphaA was not associated with its relocalization to the nucleus. These results indicate that alphaA has important cellular functions in the lens over and above its well characterized role in refraction.
Collapse
Affiliation(s)
- U P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
12
|
Rafferty NS, Rafferty KA, Zigman S. Comparative response to UV irradiation of cytoskeletal elements in rabbit and skate lens epithelial cells. Curr Eye Res 1997; 16:310-9. [PMID: 9134319 DOI: 10.1076/ceyr.16.4.310.10687] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE This work reports a differential effect of ultraviolet A (UVA) irradiation on the three major cytoskeletal structures, actin and vimentin filaments and microtubules of lens cells in primary culture. The effect on cells from lens of the skate (a bottom-dwelling marine elasmobranch) was compared with that on rabbit lens, in order to assess UVA sensitivity as a function of exposure to these wavelengths in the native habitat. METHODS Exposure intervals of irradiation time up to 6 hours were selected, at fluences from 13.5 to 54.4 J/cm2 and at 365 +/- 45 nm wavelength, to represent mild to moderate physiological levels. Cultures were fixed and processed with anti-alpha-tubulin-FITC and rhodamine phalloidin, or with anti-vimentin FITC and rhodamine phalloidin conjugates. RESULTS With epifluorescence microscopy, it was found that microtubules were most sensitive to UVA irradiation (in depolymerizing), followed by actin, with vimentin hardly at all affected. Irradiation for 6 hours followed by incubation for 3 days in fresh medium showed no recovery of actin but good recovery of microtubule organizing centers, followed by mitosis in many (rabbit) cells. Skate cells were more sensitive and showed no recovery. CONCLUSIONS In view of the role of cytoskeletal elements in intracellular structure, cell division and transport, their disruption supports the hypothesis that UVA may damage lens epithelial cells in vivo so as to contribute to cataract formation. In addition, the data suggest that the lenses of animals exposed to sunlight require effective cytoskeletal repair mechanisms to avoid loss of function.
Collapse
Affiliation(s)
- N S Rafferty
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
13
|
Mizoguchi T, Ogura T, Yagi K, Kador PF. D-fructose-mediated stimulation of bovine lens aldose reductase activation by UV-irradiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 414:529-35. [PMID: 9059659 DOI: 10.1007/978-1-4615-5871-2_60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- T Mizoguchi
- Faculty of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
14
|
Wang K, Spector A. alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:56-66. [PMID: 8954153 DOI: 10.1111/j.1432-1033.1996.0056r.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
alpha-crystallin, a major lens protein of approximately 800 kDa with subunits of about 20 kDa has previously been shown to act as a chaperone protecting other proteins from stress-induced damage and to share sequence similarity with small heat-shock proteins, sHsp. It is now demonstrated that this chaperone effect extends to protection of the intracellular matrix component actin. It was found that the powerful depolymerization effect of cytochalasin D could be almost completely blocked by alpha-crystallin, alpha A-crystallin or alpha B-crystallin. However, phosphorylation of alpha-crystallin markedly decreased its protective effect. It is suggested that phosphorylation of alpha-crystallin may contribute to changes in actin structure observed during cellular remodeling that occurs with the terminal differentiation of a lens epithelial cell to a fiber cell and contributes to cellular remodeling in other cell types that contain alpha-crystallin species. This communication presents biochemical evidence clearly demonstrating that alpha-crystallin is involved in actin polymerization-depolymerization dynamics. It is also shown that alpha-crystallin prevented heat-induced aggregation of actin filaments. alpha-crystallin was found to stabilize actin polymers decreasing dilution-induced depolymerization rates up to twofold while slightly decreasing the critical concentration from 0.23 microM to 0.18 microM. Similar results were found with either alpha-crystallin or its purified subunits alpha A-crystallin and alpha B-crystallin. In contrast to the experiments with cytochalasin D, phosphorylation had no effect. There does not appear to be an interaction between alpha-crystallin and actin monomers since the effect of alpha-crystallin in enhancing actin polymerization does not become apparent until some polymerization has occurred. Examination of the stoichiometry of the alpha-crystallin effect indicates that 2-3 alpha-crystallin monomers/actin monomer give maximum actin polymer stabilization.
Collapse
Affiliation(s)
- K Wang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
15
|
Zigman S, McDaniel T, Schultz JB, Reddan J, Meydani M. Damage to cultured lens epithelial cells of squirrels and rabbits by UV-A (99.9%) plus UV-B (0.1%) radiation and alpha tocopherol protection. Mol Cell Biochem 1995; 143:35-46. [PMID: 7776956 DOI: 10.1007/bf00925924] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this research is to observe the near-UV radiation induced damage to cultured rabbit and squirrel lens epithelial cells as related to destruction and alterations of specific biochemical targets in the cells and to determine protective effects on the cells and targets that are provided by alpha-tocopherol. Confluent monolayers of cultured rabbit and squirrel lens epithelial cells were exposed to black light (BL) lamps, which emit predominantly UV-A radiation. These cells received a mixture 3 J/cm2 of UV-A and 4 mJ/cm2 of UV-B per h. This mixture is termed near UVA (i.e.: predominantly UV-A). Cells were exposed in Tyrode's or in MEM without or with alpha-tocopherol added at 2.5-10 micrograms/ml. Analyses of cell viability and survival, the physical state of cytoskeletal actin, and the activities of Na-K-ATPase and catalase were made. Exposure to near UVA damaged these cells as measured by vital staining and colony forming ability. Pretreatment with alpha-tocopherol decreased the magnitude of near UVA cytotoxicity. Near UVA exposure in MEM always produced more damage to the cells and biochemical targets than in Tyrode's. Cytoskeletal actin was degraded and the activities of Na-K-ATPase and catalase were markedly inhibited by UV-exposure. All of these targets were at least partially protected by alpha-tocopherol in the medium. Without alpha-tocopherol added to the media, the viability and survival of the cells did not recover even after 25 h of incubation. Cell viability was better protected from near UVA by alpha-tocopherol than was the ability to grow into colonies. This indicates that alpha-tocopherol protects actin, catalase, and Na-K-ATPase from near UVA damage.
Collapse
Affiliation(s)
- S Zigman
- Ophthalmic/Biochemistry Laboratory, University of Rochester School of Medicine, New York 14620, USA
| | | | | | | | | |
Collapse
|
16
|
Zigman S, Rafferty NS. Effects of near UV radiation and antioxidants on the response of dogfish (Mustelus canis) lens to elevated H2O2. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PHYSIOLOGY 1994; 109:463-7. [PMID: 7956123 DOI: 10.1016/0300-9629(94)90151-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro exposure of dogfish (Mustelus canis) lenses to near-UV energy not incompatible with that of the environment, causes an opalescence that is not present in unirradiated lenses or those irradiated after soaking in alpha-tocopherol or deferoxamine. The ability of whole lenses to destroy H2O2, as shown by their ability to produce O2 bubbles in H2O2 containing media, is markedly diminished by UV exposure without these antioxidant/free radical scavengers added. The lens capsule epithelium is the major site of catalase activity. Bubble formation was prevented by presoaking the lenses in 3-amino-triazole (3-AT), a potent catalase inhibitor. Analytical measurements confirmed the above observations. Near-UV inhibition of catalase may allow H2O2 in the aqueous humor to damage the lens by exerting oxidative stress.
Collapse
Affiliation(s)
- S Zigman
- Ophthalmic/Biochemistry Laboratory, University of Rochester School of Medicine, NY 14642
| | | |
Collapse
|