1
|
Houska R, Stutz MB, Seitz O. Expanding the scope of native chemical ligation - templated small molecule drug synthesis via benzanilide formation. Chem Sci 2021; 12:13450-13457. [PMID: 34777764 PMCID: PMC8528049 DOI: 10.1039/d1sc00513h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
We describe a reaction system that enables the synthesis of Bcr–Abl tyrosine kinase inhibitors (TKI) via benzanilide formation in water. The reaction is based on native chemical ligation (NCL). In contrast to previous applications, we used the NCL chemistry to establish aromatic rather than aliphatic amide bonds in coupling reactions between benzoyl and o-mercaptoaniline fragments. The method was applied for the synthesis of thiolated ponatinib and GZD824 derivatives. Acid treatment provided benzothiazole structures, which opens opportunities for diversification. Thiolation affected the affinity for Abl1 kinase only moderately. Of note, a ponatinib-derived benzothiazole also showed nanomolar affinity. NCL-enabled benzanilide formation may prove useful for fragment-based drug discovery. To show that benzanilide synthesis can be put under the control of a template, we connected the benzoyl and o-mercaptoaniline fragments to DNA and peptide nucleic acid (PNA) oligomers. Complementary RNA templates enabled adjacent binding of reactive conjugates triggering a rapid benzoyl transfer from a thioester-linked DNA conjugate to an o-mercaptoaniline-DNA or -PNA conjugate. We evaluated the influence of linker length and unpaired spacer nucleotides within the RNA template on the product yield. The data suggest that nucleic acid-templated benzanilide formation could find application in the establishment of DNA-encoded combinatorial libraries (DEL). The templated native chemical ligation between benzoyl thioesters and o-mercaptoaniline fragments proceeds in water and provides benzanilides that have nanomolar affinity for Abl1 kinase.![]()
Collapse
Affiliation(s)
- Richard Houska
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Marvin Björn Stutz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
2
|
Zozulia O, Bachmann T, Deussner-Helfmann NS, Beierlein F, Heilemann M, Mokhir A. Red light-triggered nucleic acid-templated reaction based on cyclic oligonucleotide substrates. Chem Commun (Camb) 2019; 55:10713-10716. [PMID: 31429427 DOI: 10.1039/c9cc03587g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A red light-triggered reaction based on cyclic oligonucleotide substrates that is accelerated over 30-fold by specific nucleic acid templates and generates a bright fluorescent probe was developed. We confirmed that this reaction is compatible with fluorescence correlation spectroscopy (FCS) thereby allowing detection of nucleic acids down to 1 nM.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.
| | - Tobias Bachmann
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.
| | - Nina S Deussner-Helfmann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, 60438 Frankfurt, Germany
| | - Frank Beierlein
- Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, 60438 Frankfurt, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Abstract
Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| |
Collapse
|
4
|
Duchemin N, Heath-Apostolopoulos I, Smietana M, Arseniyadis S. A decade of DNA-hybrid catalysis: from innovation to comprehension. Org Biomol Chem 2017; 15:7072-7087. [DOI: 10.1039/c7ob00176b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since the pioneering work of Roelfes and Feringa in the field of DNA-based asymmetric catalysis, the unique chirality of oligonucleotides has allowed the development of a variety of asymmetric synthetic transformations. This review offers a complete overview of the field.
Collapse
Affiliation(s)
- Nicolas Duchemin
- Queen Mary University of London
- School of Biological and Chemical Sciences
- London
- UK
| | | | - Michael Smietana
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS
- Université de Montpellier
- 34095 Montpellier
- France
| | - Stellios Arseniyadis
- Queen Mary University of London
- School of Biological and Chemical Sciences
- London
- UK
| |
Collapse
|
5
|
DNA-Dye-Conjugates: Conformations and Spectra of Fluorescence Probes. PLoS One 2016; 11:e0160229. [PMID: 27467071 PMCID: PMC4965132 DOI: 10.1371/journal.pone.0160229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/16/2016] [Indexed: 02/04/2023] Open
Abstract
Extensive molecular-dynamics (MD) simulations have been used to investigate DNA-dye and DNA-photosensitizer conjugates, which act as reactants in templated reactions leading to the generation of fluorescent products in the presence of specific desoxyribonucleic acid sequences (targets). Such reactions are potentially suitable for detecting target nucleic acids in live cells by fluorescence microscopy or flow cytometry. The simulations show how the attached dyes/photosensitizers influence DNA structure and reveal the relative orientations of the chromophores with respect to each other. Our results will help to optimize the reactants for the templated reactions, especially length and structure of the spacers used to link reporter dyes or photosensitizers to the oligonucleotides responsible for target recognition. Furthermore, we demonstrate that the structural ensembles obtained from the simulations can be used to calculate steady-state UV-vis absorption and emission spectra. We also show how important quantities describing the quenching of the reporter dye via fluorescence resonance energy transfer (FRET) can be calculated from the simulation data, and we compare these for different relative chromophore geometries.
Collapse
|
6
|
Catalano MJ, Price NE, Gates KS. Effective molarity in a nucleic acid-controlled reaction. Bioorg Med Chem Lett 2016; 26:2627-30. [PMID: 27117430 DOI: 10.1016/j.bmcl.2016.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/30/2022]
Abstract
Positioning of reactive functional groups within a DNA duplex can enable chemical reactions that otherwise would not occur to an appreciable extent. However, few studies have quantitatively defined the extent to which the enforced proximity of reaction partners in duplex DNA can favor chemical processes. Here, we measured substantial effective molarities (as high as 25M) afforded by duplex DNA to a reaction involving interstrand cross-link formation between 2'-deoxyadenosine and a 2-deoxyribose abasic (Ap) site.
Collapse
Affiliation(s)
- Michael J Catalano
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Nathan E Price
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, 125 Chemistry Building, Columbia, MO 65211, United States.
| |
Collapse
|
7
|
Patel PL, Rana NK, Patel MR, Kozuch SD, Sabatino D. Nucleic Acid Bioconjugates in Cancer Detection and Therapy. ChemMedChem 2015; 11:252-69. [PMID: 26663095 DOI: 10.1002/cmdc.201500502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Nucleoside- and nucleotide-based chemotherapeutics have been used to treat cancer for more than 50 years. However, their inherent cytotoxicities and the emergent resistance of tumors against treatment has inspired a new wave of compounds in which the overall pharmacological profile of the bioactive nucleic acid component is improved by conjugation with delivery vectors, small-molecule drugs, and/or imaging modalities. In this manner, nucleic acid bioconjugates have the potential for targeting and effecting multiple biological processes in tumors, leading to synergistic antitumor effects. Consequently, tumor resistance and recurrence is mitigated, leading to more effective forms of cancer therapy. Bioorthogonal chemistry has led to the development of new nucleoside bioconjugates, which have served to improve treatment efficacy en route towards FDA approval. Similarly, oligonucleotide bioconjugates have shown encouraging preclinical and clinical results. The modified oligonucleotides and their pharmaceutically active formulations have addressed many weaknesses of oligonucleotide-based drugs. They have also paved the way for important advancements in cancer diagnosis and treatment. Cancer-targeting ligands such as small-molecules, peptides, and monoclonal antibody fragments have all been successfully applied in oligonucleotide bioconjugation and have shown promising anticancer effects in vitro and in vivo. Thus, the application of bioorthogonal chemistry will, in all likelihood, continue to supply a promising pipeline of nucleic acid bioconjugates for applications in cancer detection and therapy.
Collapse
Affiliation(s)
- Pradeepkumar L Patel
- Sun Pharmaceutical Industries Inc., Analytical Research and Development, 270 Prospect Plains Road, Cranbury, NJ, 08512, USA
| | - Niki K Rana
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Mayurbhai R Patel
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Stephen D Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA.
| |
Collapse
|
8
|
Vázquez O, Seitz O. Cytotoxic peptide–PNA conjugates obtained by RNA-programmed peptidyl transfer with turnover. Chem Sci 2014. [DOI: 10.1039/c4sc00299g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A RNA triggered chemical peptidyl transfer reaction leads to a cytotoxic peptide conjugate that requires turnover in RNA for bioactivity.
Collapse
Affiliation(s)
- O. Vázquez
- Institut für Chemie
- Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - O. Seitz
- Institut für Chemie
- Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| |
Collapse
|
9
|
Roloff A, Seitz O. Reducing product inhibition in nucleic acid-templated ligation reactions: DNA-templated cycligation. Chembiochem 2013; 14:2322-8. [PMID: 24243697 DOI: 10.1002/cbic.201300516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Indexed: 01/19/2023]
Abstract
Programmable interactions allow nucleic acid molecules to template chemical reactions by increasing the effective molarities of appended reactive groups. DNA/RNA-triggered reactions can proceed, in principle, with turnover in the template. The amplification provided by the formation of many product molecules per template is a valuable asset when the availability of the DNA or RNA target is limited. However, turnover is usually impeded by reaction products that block access to the template. Product inhibition is most severe in ligation reactions, where products after ligation have dramatically increased template affinities. We introduce a potentially generic approach to reduce product inhibition in nucleic acid-programmed ligation reactions. A DNA-triggered ligation-cyclization sequence ("cycligation") of bifunctional peptide nucleic acid (PNA) conjugates affords cyclic ligation products. Melting experiments revealed that product cyclization is accompanied by a pronounced decrease in template affinity compared to linear ligation products. The reaction system relies upon haloacetylated PNA-thioesters and isocysteinyl-PNA-cysteine conjugates, which were ligated on a DNA template according to a native chemical ligation mechanism. Dissociation of the resulting linear product-template duplex (induced by, for example, thermal cycling) enabled product cyclization through sulfur-halide substitution. Both ligation and cyclization are fast reactions (ligation: 86 % yield after 20 min, cyclization: quantitative after 5 min). Under thermocycling conditions, the DNA template was able to trigger the formation of new product molecules when fresh reactants were added. Furthermore, cycligation produced 2-3 times more product than a conventional ligation reaction with substoichiometric template loads (0.25-0.01 equiv). We believe that cyclization of products from DNA-templated reactions could ultimately afford systems that completely overcome product inhibition.
Collapse
Affiliation(s)
- Alexander Roloff
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489-Berlin (Germany)
| | | |
Collapse
|
10
|
Dutta S, Fülöp A, Mokhir A. Fluorogenic, Catalytic, Photochemical Reaction for Amplified Detection of Nucleic Acids. Bioconjug Chem 2013; 24:1533-42. [DOI: 10.1021/bc400152n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Subrata Dutta
- Institute of Organic Chemistry
II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054 Erlangen, Germany
| | - Annabelle Fülöp
- Institute of Organic Chemistry
II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054 Erlangen, Germany
| | - Andriy Mokhir
- Institute of Organic Chemistry
II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Hobert EM, Doerner AE, Walker AS, Schepartz A. Effective molarity redux: Proximity as a guiding force in chemistry and biology. Isr J Chem 2013; 53:567-576. [PMID: 25418998 PMCID: PMC4238305 DOI: 10.1002/ijch.201300063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell interior is a complex and demanding environment. An incredible variety of molecules jockey to identify the correct position-the specific interactions that promote biology that are hidden among countless unproductive options. Ensuring that the business of the cell is successful requires sophisticated mechanisms to impose temporal and spatial specificity-both on transient interactions and their eventual outcomes. Two strategies employed to regulate macromolecular interactions in a cellular context are co-localization and compartmentalization. Macromolecular interactions can be promoted and specified by localizing the partners within the same subcellular compartment, or by holding them in proximity through covalent or non-covalent interactions with proteins, lipids, or DNA- themes that are familiar to any biologist. The net result of these strategies is an increase in effective molarity: the local concentration of a reactive molecule near its reaction partners. We will focus on this general mechanism, employed by Nature and adapted in the lab, which allows delicate control in complex environments: the power of proximity to accelerate, guide, or otherwise influence the reactivity of signaling proteins and the information that they encode.
Collapse
|
12
|
Battle C, Chu X, Jayawickramarajah J. Oligonucleotide-Based Systems for Input-Controlled and Non-Covalently Regulated Protein-Binding. Supramol Chem 2013; 25. [PMID: 24187478 DOI: 10.1080/10610278.2013.810337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supramolecular chemists continuously take inspiration from complex biological systems to develop functional molecules involved in molecular recognition and self-assembly. In this regard, "smart" synthetic molecules that emulate allosteric proteins are both exciting and challenging, since many allosteric proteins can be considered as molecular switches that bind to other protein targets in a non-covalent fashion, and importantly, are capable of having their output activity controlled by prior binding to input molecules. This review discusses the foundations and passage toward the development of non-covalently operated oligonucleotide-based systems with protein-binding capacity that can be precisely regulated in an input-controlled manner.
Collapse
Affiliation(s)
- Cooper Battle
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | | | | |
Collapse
|
13
|
Gorska K, Winssinger N. Reactions templated by nucleic acids: more ways to translate oligonucleotide-based instructions into emerging function. Angew Chem Int Ed Engl 2013; 52:6820-43. [PMID: 23794204 DOI: 10.1002/anie.201208460] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Indexed: 12/30/2022]
Abstract
The programmability of oligonucleotide recognition offers an attractive platform to direct the assembly of reactive partners that can engage in chemical reactions. Recently, significant progress has been made in both the breadth of chemical transformations and in the functional output of the reaction. Herein we summarize these recent progresses and illustrate their applications to translate oligonucleotide instructions into functional materials and novel architectures (conductive polymers, nanopatterns, novel oligonucleotide junctions); into fluorescent or bioactive molecule using cellular RNA; to interrogate secondary structures or oligonucelic acids; or a synthetic oligomer.
Collapse
Affiliation(s)
- Katarzyna Gorska
- Institut de Science et Ingénierie Supramoléculaires (ISIS-UMR 7006), Universite de Strasbourg-CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | |
Collapse
|
14
|
Gorska K, Winssinger N. Reaktionen an Nucleinsäuretemplaten: mehr Methoden zur Übersetzung Oligonucleotid-basierter Informationen in neue Funktionen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Roloff A, Seitz O. Bioorthogonal reactions challenged: DNA templated native chemical ligation during PCR. Chem Sci 2013. [DOI: 10.1039/c2sc20961f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
16
|
Prusty DK, Kwak M, Wildeman J, Herrmann A. Modular assembly of a Pd catalyst within a DNA scaffold for the amplified colorimetric and fluorimetric detection of nucleic acids. Angew Chem Int Ed Engl 2012; 51:11894-8. [PMID: 23076826 PMCID: PMC3533772 DOI: 10.1002/anie.201206006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Deepak K Prusty
- University of Groningen, Zernike Institute for Advanced Materials, Department of Polymer Chemistry, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | | | | | | |
Collapse
|
17
|
Prusty DK, Kwak M, Wildeman J, Herrmann A. Modular Assembly of a Pd Catalyst within a DNA Scaffold for the Amplified Colorimetric and Fluorimetric Detection of Nucleic Acids. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Oligonucleotide-templated reactions for sensing nucleic acids. Molecules 2012; 17:2446-63. [PMID: 22374329 PMCID: PMC6268776 DOI: 10.3390/molecules17032446] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide-templated reactions are useful for applying nucleic acid sensing. Various chemistries for oligonucleotide-templated reaction have been reported so far. Major scientific interests are focused on the development of signal amplification systems and signal generation systems. We introduce the recent advances of oligonucleotide-templated reaction in consideration of the above two points.
Collapse
|
19
|
McKee ML, Milnes PJ, Bath J, Stulz E, O'Reilly RK, Turberfield AJ. Programmable one-pot multistep organic synthesis using DNA junctions. J Am Chem Soc 2012; 134:1446-9. [PMID: 22276773 DOI: 10.1021/ja2101196] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A system for multistep DNA-templated synthesis is controlled by the sequential formation of DNA junctions. Reactants are attached to DNA adapters which are brought together by hybridization to DNA template strands. This process can be repeated to allow sequence-controlled oligomer synthesis while maintaining a constant reaction environment, independent of oligomer length, at each reaction step. Synthesis can take place in a single pot containing all required reactive monomers. Different oligomers can be synthesized in parallel in the same vessel, and the products of parallel synthesis can be ligated, reducing the number of reaction steps required to produce an oligomer of a given length.
Collapse
Affiliation(s)
- Mireya L McKee
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | | | | | | | | | | |
Collapse
|
20
|
Röthlingshöfer M, Gorska K, Winssinger N. Nucleic Acid Templated Uncaging of Fluorophores Using Ru-Catalyzed Photoreduction with Visible Light. Org Lett 2011; 14:482-5. [DOI: 10.1021/ol203029t] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Röthlingshöfer
- Institut de Science et Ingénierie Supramoléculaires (ISIS - UMR 7006), Université de Strasbourg - CNRS, 8 allée Gaspard Monge, F67000 Strasbourg, France
| | - Katarzyna Gorska
- Institut de Science et Ingénierie Supramoléculaires (ISIS - UMR 7006), Université de Strasbourg - CNRS, 8 allée Gaspard Monge, F67000 Strasbourg, France
| | - Nicolas Winssinger
- Institut de Science et Ingénierie Supramoléculaires (ISIS - UMR 7006), Université de Strasbourg - CNRS, 8 allée Gaspard Monge, F67000 Strasbourg, France
| |
Collapse
|
21
|
Arian D, Kovbasyuk L, Mokhir A. Control of the photocatalytic activity of bimetallic complexes of pyropheophorbide-a by nucleic acids. Inorg Chem 2011; 50:12010-7. [PMID: 22047611 DOI: 10.1021/ic201408h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photocatalytic activity of a photosensitizer (PS) in an oligodeoxyribonucleotide duplex 5'-PS~ODN1/ODN2~Q-3' is inhibited because of close proximity of a quencher Q. The ODN2 in this duplex is selected to be longer than the ODN1. Therefore, in the presence of a nucleic acid (analyte), which is fully complementary to the ODN2 strand, the duplex is decomposed with formation of an analyte/ODN2~Q duplex and a catalytically active, single stranded PS~ODN1. In this way the catalytic activity of the PS can be controlled by the specific nucleic acids. We applied this reaction earlier for the amplified detection of ribonucleic acids in live cells (Arian, D.; Cló, E.; Gothelf, K.; Mokhir, A. Chem.-Eur. J.2010, 16(1), 288). As a photosensitizer (PS) we used In(3+)(pyropheophorbide-a)chloride and as a quencher (Q)--Black-Hole-Quencher-3 (BHQ-3). The In(3+) complex is a highly active photocatalyst in aqueous solution. However, it can coordinate additional ligands containing thiols (e.g., proteins, peptides, and aminoacids), that modulate properties of the complex itself and of the corresponding bio- molecules. These possible interactions can lead to undesired side effects of nucleic acid controlled photocatalysts (PS~ODN1/ODN2∼Q) in live cells. In this work we explored the possibility to substitute the In(3+) complex for those ones of divalent metal ions, Zn(2+) and Pd(2+), which exhibit lower or no tendency to coordinate the fifth ligand. We found that one of the compounds tested (Pd(pyropheophorbide-a) is as potent and as stable photosensitizer as its In(3+) analogue, but does not coordinate additional ligands that makes it more suitable for cellular applications. When the Pd complex was introduced in the duplex PS~ODN1/ODN2~Q as a PS, its photocatalytic activity could be controlled by nucleic acids as efficiently as that of the corresponding In(3+) complex.
Collapse
Affiliation(s)
- Dumitru Arian
- Institute of Inorganic Chemistry, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Röthlingshöfer M, Gorska K, Winssinger N. Nucleic Acid-Templated Energy Transfer Leading to a Photorelease Reaction and its Application to a System Displaying a Nonlinear Response. J Am Chem Soc 2011; 133:18110-3. [DOI: 10.1021/ja2086504] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manuel Röthlingshöfer
- Institut de Science et Ingénierie Supramoléculaires (ISIS − UMR 7006), Université de Strasbourg − CNRS, 8 allée Gaspard Monge, F67000 Strasbourg, France
| | - Katarzyna Gorska
- Institut de Science et Ingénierie Supramoléculaires (ISIS − UMR 7006), Université de Strasbourg − CNRS, 8 allée Gaspard Monge, F67000 Strasbourg, France
| | - Nicolas Winssinger
- Institut de Science et Ingénierie Supramoléculaires (ISIS − UMR 7006), Université de Strasbourg − CNRS, 8 allée Gaspard Monge, F67000 Strasbourg, France
| |
Collapse
|
23
|
|
24
|
Erben A, Grossmann TN, Seitz O. DNA-instructed acyl transfer reactions for the synthesis of bioactive peptides. Bioorg Med Chem Lett 2011; 21:4993-7. [PMID: 21664815 DOI: 10.1016/j.bmcl.2011.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 01/31/2023]
Abstract
We present a method which allows for the translation of nucleic acid information into the output of molecules that interfere with disease-related protein-protein interactions. The method draws upon a nucleic acid-templated reaction, in which adjacent binding of reactive conjugates triggers the transfer of an aminoacyl or peptidyl group from a donating thioester-linked PNA-peptide hybrid to a peptide-PNA acceptor. We evaluated the influence of conjugate structures on reactivity and sequence specificity. The DNA-triggered peptide synthesis proceeded sequence specifically and showed catalytic turnover in template. The affinity of the formed peptide conjugates for the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP) is discussed.
Collapse
Affiliation(s)
- Anne Erben
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | | | | |
Collapse
|
25
|
Erben A, Grossmann TN, Seitz O. DNA-triggered synthesis and bioactivity of proapoptotic peptides. Angew Chem Int Ed Engl 2011; 50:2828-32. [PMID: 21387498 DOI: 10.1002/anie.201007103] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Erben
- Institut für Chemie der Humboldt Universität zu Berlin, Germany
| | | | | |
Collapse
|
26
|
Erben A, Grossmann TN, Seitz O. DNA‐gesteuerte Synthese und Bioaktivität proapoptotischer Peptide. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anne Erben
- Institut für Chemie der Humboldt Universität zu Berlin, Brook‐Taylor‐Straße 2, 12489 Berlin (Deutschland), Fax: (+49) 30‐2093‐7266
| | - Tom N. Grossmann
- Institut für Chemie der Humboldt Universität zu Berlin, Brook‐Taylor‐Straße 2, 12489 Berlin (Deutschland), Fax: (+49) 30‐2093‐7266
| | - Oliver Seitz
- Institut für Chemie der Humboldt Universität zu Berlin, Brook‐Taylor‐Straße 2, 12489 Berlin (Deutschland), Fax: (+49) 30‐2093‐7266
| |
Collapse
|
27
|
Stoop M, Leumann CJ. Homo-DNA templated chemistry and its application to nucleic acid sensing. Chem Commun (Camb) 2011; 47:7494-6. [DOI: 10.1039/c1cc11469g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Gorska K, Manicardi A, Barluenga S, Winssinger N. DNA-templated release of functional molecules with an azide-reduction-triggered immolative linker. Chem Commun (Camb) 2011; 47:4364-6. [DOI: 10.1039/c1cc10222b] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Dutta S, Mokhir A. An autocatalytic chromogenic and fluorogenic photochemical reaction controlled by nucleic acids. Chem Commun (Camb) 2010; 47:1243-5. [PMID: 21103531 DOI: 10.1039/c0cc02508a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The autocatalytic photochemical reaction, which is potentially controlled by any selected nucleic acid, is highly sequence specific and not inhibited by its products, was developed. This reaction generates colored and fluorescent products, which can be monitored by the naked eye.
Collapse
Affiliation(s)
- Subrata Dutta
- Institute of Inorganic Chemistry, University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | | |
Collapse
|
30
|
Kleinbaum DJ, Miller GP, Kool ET. Double displacement: An improved bioorthogonal reaction strategy for templated nucleic acid detection. Bioconjug Chem 2010; 21:1115-20. [PMID: 20509625 DOI: 10.1021/bc100165h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is the undesired reaction with water and other cellular nucleophiles. Here, we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectures, all possessing two fluorescence quencher/leaving groups (dabsylate groups), were synthesized and evaluated for templated reaction with nucleophile (phosphorothioate) probes both in vitro and in intact bacterial cells. All three DD probe designs provided substantially better initial quenching than a single-Dabsyl control. In isothermal templated reactions in vitro, double displacement probes yielded considerably lower background signal than previous single displacement probes; investigation into the mechanism revealed that one dabsylate acts as a sacrificial leaving group, reacting nonspecifically with water, but yielding little signal because another quencher group remains. Templated reaction with the specific nucleophile probe is required to activate a signal. The double displacement probes provided a ca. 80-fold turn-on signal and yielded a 2-4-fold improvement in signal/background over single Dabsyl probes. The best-performing probe architecture was demonstrated in a two-color, FRET-based two-allele discrimination system in vitro and was shown to be capable of discriminating between two closely related species of bacteria differing by a single nucleotide at an rRNA target site.
Collapse
Affiliation(s)
- Daniel J Kleinbaum
- Department of Chemistry, Stanford University, California 94305-5080, USA
| | | | | |
Collapse
|
31
|
Fülöp A, Peng X, Greenberg MM, Mokhir A. A nucleic acid-directed, red light-induced chemical reaction. Chem Commun (Camb) 2010; 46:5659-61. [PMID: 20574574 DOI: 10.1039/c0cc00744g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first nucleic acid-directed catalytic photochemical reaction that is induced by nontoxic red light was developed. This reaction is fast, high yielding, sequence specific, and enables one to functionalize an oligonucleotide.
Collapse
Affiliation(s)
- Annabelle Fülöp
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
32
|
Arian D, Cló E, Gothelf K, Mokhir A. A Nucleic Acid Dependent Chemical Photocatalysis in Live Human Cells. Chemistry 2010; 16:288-95. [DOI: 10.1002/chem.200902377] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Jentzsch E, Mokhir A. A Fluorogenic, Nucleic Acid Directed “Click” Reaction. Inorg Chem 2009; 48:9593-5. [DOI: 10.1021/ic9006795] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elmar Jentzsch
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Andriy Mokhir
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Grossmann TN, Strohbach A, Seitz O. Achieving turnover in DNA-templated reactions. Chembiochem 2009; 9:2185-92. [PMID: 18752239 DOI: 10.1002/cbic.200800290] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tom N Grossmann
- Institut für Chemie der Humboldt-Universität zu Berlin, Germany
| | | | | |
Collapse
|
35
|
Organic Chemistry: T. Hayashi / Bioorganic Chemistry: K. V. Gothelf / Inorganic Chemistry: Prize to K. N. Raymond. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/anie.200801800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Organische Chemie: T. Hayashi ausgezeichnet / Bioorganische Chemie: K. V. Gothelf geehrt / Anorganische Chemie: Preis für K. N. Raymond. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|