1
|
Caira S, Picariello G, Renzone G, Arena S, Troise AD, De Pascale S, Ciaravolo V, Pinto G, Addeo F, Scaloni A. Recent developments in peptidomics for the quali-quantitative analysis of food-derived peptides in human body fluids and tissues. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Xu Q, Hong H, Wu J, Yan X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.050] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Development and validation of a sensitive LC-MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino Acids 2018; 51:103-114. [PMID: 30302566 DOI: 10.1007/s00726-018-2663-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022]
Abstract
Carnosine (beta-alanyl-L-histidine) and its methylated analogue anserine are present in relevant concentrations in the omnivore human diet. Several studies reported promising therapeutic potential for carnosine in various rodent models of oxidative stress and inflammation-related chronic diseases. Nevertheless, the poor serum stability of carnosine in humans makes the translation of rodent models hard. Even though anserine and carnosine have similar biochemical properties, anserine has better serum stability. Despite this interesting profile, the research on anserine is scarce. The aim of this study was to explore the bioavailability and stability of synthesized anserine by (1) performing in vitro stability experiments in human plasma and molecular modelling studies and by (2) evaluating the plasma and urinary pharmacokinetic profile in healthy volunteers following different doses of anserine (4-10-20 mg/kg body weight). A bio-analytical method for measuring anserine levels was developed and validated using liquid chromatography-electrospray mass spectrometry. Both plasma (CMAX: 0.54-1.10-3.12 µM) and urinary (CMAX: 0.09-0.41-0.72 mg/mg creatinine) anserine increased dose-dependently following ingestion of 4-10-20 anserine mg/kg BW, respectively. The inter-individual variation in plasma anserine was mainly explained by the activity (R2 = 0.75) and content (R2 = 0.77) of the enzyme serum carnosinase-1. Compared to carnosine, a lower interaction energy of anserine with carnosinase-1 was suggested by molecular modelling studies. Conversely, the two dipeptides seems to have similar interaction with the PEPT1 transporter. It can be concluded that nutritionally relevant doses of synthesized anserine are well-absorbed and that its degradation by serum carnosinase-1 is less pronounced compared to carnosine. This makes anserine a good candidate as a more stable carnosine-analogue to attenuate chronic diseases in humans.
Collapse
|
5
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
6
|
Samsudin F, Parker JL, Sansom MSP, Newstead S, Fowler PW. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter. Cell Chem Biol 2016; 23:299-309. [PMID: 27028887 PMCID: PMC4760754 DOI: 10.1016/j.chembiol.2015.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 12/04/2022]
Abstract
Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. A hierarchical computational approach determines ligand affinities to transporters Lysine-containing dipeptides proposed to bind vertically like a tripeptide Experimental structures are vital for the accurate prediction of affinities A model of prodrug interactions to human PepT1 is suggested
Collapse
Affiliation(s)
- Firdaus Samsudin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Philip W Fowler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
7
|
Romano A, Barca A, Storelli C, Verri T. Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+-oligopeptide transporter as a case study. J Physiol 2013; 592:881-97. [PMID: 23981715 DOI: 10.1113/jphysiol.2013.259622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human genes for passive, ion-coupled transporters and exchangers are included in the so-called solute carrier (SLC) gene series, to date consisting of 52 families and 398 genes. Teleost fish genes for SLC proteins have also been described in the last two decades, and catalogued in preliminary SLC-like form in 50 families and at least 338 genes after systematic GenBank database mining (December 2010-March 2011). When the kinetic properties of the expressed proteins are studied in detail, teleost fish SLC transporters always reveal extraordinary 'molecular diversity' with respect to the mammalian counterparts, which reflects peculiar adaptation of the protein to the physiology of the species and/or to the environment where the species lives. In the case of the H+ -oligopeptide transporter PEPT1(SLC15A1), comparative analysis of diverse teleost fish orthologs has shown that the protein may exhibit very eccentric properties in terms of pH dependence (e.g., the adaptation of zebrafish PEPT1 to alkaline pH), temperature dependence (e.g., the adaptation of icefish PEPT1 to sub-zero temperatures) and/or substrate specificity (e.g., the species-specificity of PEPT1 for the uptake of l-lysine-containing peptides). The revelation of such peculiarities is providing new contributions to the discussion on PEPT1 in both basic (e.g., molecular structure-function analyses) and applied research (e.g., optimizing diets to enhance growth of commercially valuable fish).
Collapse
Affiliation(s)
- Alessandro Romano
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy.
| | | | | | | |
Collapse
|
8
|
Vistoli G, De Maddis D, Straniero V, Pedretti A, Pallavicini M, Valoti E, Carini M, Testa B, Aldini G. Exploring the space of histidine containing dipeptides in search of novel efficient RCS sequestering agents. Eur J Med Chem 2013; 66:153-60. [PMID: 23792353 DOI: 10.1016/j.ejmech.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/25/2013] [Accepted: 05/10/2013] [Indexed: 11/16/2022]
Abstract
The study reports a set of forty proteinogenic histidine-containing dipeptides as potential carbonyl quenchers. The peptides were chosen to cover as exhaustively as possible the accessible chemical space, and their quenching activities toward 4-hydroxy-2-nonenal (HNE) and pyridoxal were evaluated by HPLC analyses. The peptides were capped at the C-terminus as methyl esters or amides to favor their resistance to proteolysis and diastereoisomeric pairs were considered to reveal the influence of configuration on quenching. On average, the examined dipeptides are less active than the parent compound carnosine (βAla + His) thus emphasizing the unfavorable effect of the shortening of the βAla residue as confirmed by the control dipeptide Gly-His. Nevertheless, some peptides show promising activities toward HNE combined with a remarkable selectivity. The results emphasize the beneficial role of aromatic and positively charged residues, while negatively charged and H-bonding side chains show a detrimental effect on quenching. As a trend, ester derivatives are slightly more active than amides while heterochiral peptides are more active than their homochiral diastereoisomer. Overall, the results reveal that quenching activity strongly depends on conformational effects and vicinal residues (as evidenced by the reported QSAR analysis), offering insightful clues for the design of improved carbonyl quenchers and to rationalize the specific reactivity of histidine residues within proteins.
Collapse
Affiliation(s)
- Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Krylov IS, Kashemirov BA, Hilfinger JM, McKenna CE. Evolution of an amino acid based prodrug approach: stay tuned. Mol Pharm 2013; 10:445-58. [PMID: 23339402 PMCID: PMC3788118 DOI: 10.1021/mp300663j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Certain acyclic nucleoside phosphonates (ANPs) such as (S)-HPMPC (cidofovir, Vistide) and (S)-HPMPA have been shown to be active against a broad spectrum of DNA and retroviruses. However, their poor absorption as well as their toxicity limit the utilization of these therapeutics in the clinic. Nucleoside phosphonates are poorly absorbed primarily due to the presence of the phosphonic acid group, which ionizes at physiological pH. When dosed intravenously they display dose-limiting nephrotoxicity due to their accumulation in the kidney. To overcome these limitations, nucleoside phosphonate prodrug strategies have taken center stage in the development pathway and a number of different approaches are at various stages of development. Our efforts have focused on the development of ANP prodrugs in which a benign amino acid promoiety masks a phosphonate P-OH via a hydroxyl side chain. The design of these prodrugs incorporates multiple chemical groups (the P-X-C linkage, the amino acid stereochemistry, the C-terminal and N-terminal functional groups) that can be tuned to modify absorption, pharmacokinetic and efficacy properties with the goal of improving overall prodrug performance.
Collapse
Affiliation(s)
- Ivan S. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| | | | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| |
Collapse
|
10
|
Saaby L, Nielsen C, Steffansen B, Larsen S, Brodin B. Current status of rational design of prodrugs targeting the intestinal di/tri-peptide transporter hPEPT1 (SLC15A1). J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50047-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Characterization of the transport of lysine-containing dipeptides by PepT1 orthologs expressed in Xenopus laevis oocytes. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:520-8. [PMID: 23268205 DOI: 10.1016/j.cbpa.2012.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 11/23/2022]
Abstract
During digestion, dietary proteins cleaved in di and tri-peptides are translocated from the intestinal lumen into the enterocytes via PepT1 (SLC15A1) using an inwardly directed proton electrochemical gradient. The kinetic properties in various PepT1 orthologs (Dicentrarchus labrax, Oryctolagus cuniculus, Danio rerio) have been explored to determine the transport efficiency of different combinations of lysine, methionine, and glycine. Species-specific differences were observed. Lys-Met resulted the best substrate at all tested potentials in sea bass and rabbit PepT1, whereas in the zebrafish transporter all tested dipeptides (except Gly-Lys) elicited similar currents independently on the charge position or amino acid composition. For the sea bass and rabbit PepT1, kinetic parameters, K(0.5) and I(max) and their ratio, show the importance of the position of the charged lysine in the peptide. The PepT1 transporter of these species has very low affinity for Lys-Lys and Gly-Lys; this reduces the transport efficiency which is instead higher for Lys-Met and Lys-Gly. PepT1 from zebrafish showed relatively high affinity and excellent transport efficiency for Met-Lys and Lys-Met. These data led us to speculate about the structural determinants involved in substrate interaction according to the model proposed for this transporter.
Collapse
|
12
|
Vistoli G, Carini M, Aldini G. Transforming dietary peptides in promising lead compounds: the case of bioavailable carnosine analogs. Amino Acids 2012; 43:111-26. [PMID: 22286834 DOI: 10.1007/s00726-012-1224-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/12/2012] [Indexed: 01/12/2023]
Abstract
The ability of carnosine to prevent advanced glycoxidation end products (AGEs) and advanced lipoxidation end products (ALEs) formation, on the one hand, and the convincing evidence that these compounds act as pathogenetic factors, on the other hand, strongly support carnosine as a promising therapeutic agent for oxidative-based diseases. The mechanism/s by which carnosine inhibits AGEs and ALEs is still under investigation but an emerging hypothesis is that carnosine acts by deactivating the AGEs and ALEs precursors and in particular the reactive carbonyl species (RCS) generated by both lipid and sugar oxidation. The ability of carnosine to inhibit AGEs and ALEs formation and the corresponding biological effects has been demonstrated in several in vitro studies and in some animal models. However, such effects are in line of principle, limited in humans, due to the effect of serum carnosinase (absent in rodents), which catalyzes the carnosine hydrolysis to its constitutive amino acids. Such a limitation has prompted a great interest in the design of carnosine derivatives, which maintaining (or improving) the reactivity with RCS, are more resistant to carnosinase. The present paper intends to critically review the most recent studies oriented to obtaining carnosine derivatives, optimized in terms of reactivity with RCS, selectivity (no reaction with physiological aldehydes) and the pharmacokinetic profile (mainly through an enhanced resistance to carnosinase hydrolysis). The review also includes a brief description of AGEs and ALEs as drug targets and the evidence so far reported regarding the ability of carnosine as inhibitor of AGEs and ALEs formation and the proposed reaction mechanisms.
Collapse
Affiliation(s)
- Giulio Vistoli
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | | | | |
Collapse
|
13
|
Terada T, Inui KI. Recent Advances in Structural Biology of Peptide Transporters. CURRENT TOPICS IN MEMBRANES 2012. [DOI: 10.1016/b978-0-12-394316-3.00008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
14
|
Pedretti A, De Luca L, Marconi C, Regazzoni L, Aldini G, Vistoli G. Fragmental modeling of hPepT2 and analysis of its binding features by docking studies and pharmacophore mapping. Bioorg Med Chem 2011; 19:4544-51. [DOI: 10.1016/j.bmc.2011.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 06/01/2011] [Accepted: 06/08/2011] [Indexed: 11/29/2022]
|
15
|
Orioli M, Vistoli G, Regazzoni L, Pedretti A, Lapolla A, Rossoni G, Canevotti R, Gamberoni L, Previtali M, Carini M, Aldini G. Design, Synthesis, ADME Properties, and Pharmacological Activities of β-Alanyl-D-histidine (D-Carnosine) Prodrugs with Improved Bioavailability. ChemMedChem 2011; 6:1269-82. [DOI: 10.1002/cmdc.201100042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/11/2011] [Indexed: 01/29/2023]
|
16
|
Bertinaria M, Rolando B, Giorgis M, Montanaro G, Guglielmo S, Buonsanti MF, Carabelli V, Gavello D, Daniele PG, Fruttero R, Gasco A. Synthesis, Physicochemical Characterization, and Biological Activities of New Carnosine Derivatives Stable in Human Serum As Potential Neuroprotective Agents. J Med Chem 2010; 54:611-21. [DOI: 10.1021/jm101394n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Massimo Bertinaria
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Marta Giorgis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Gabriele Montanaro
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Stefano Guglielmo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - M. Federica Buonsanti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Valentina Carabelli
- Dipartimento di Neuroscienze, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Daniela Gavello
- Dipartimento di Neuroscienze, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Pier Giuseppe Daniele
- Dipartimento di Chimica Analitica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Roberta Fruttero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Alberto Gasco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
17
|
Foley DW, Rajamanickam J, Bailey PD, Meredith D. Bioavailability through PepT1: the role of computer modelling in intelligent drug design. Curr Comput Aided Drug Des 2010; 6:68-78. [PMID: 20370696 DOI: 10.2174/157340910790980133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to being responsible for the majority of absorption of dietary nitrogen, the mammalian proton-coupled di- and tri-peptide transporter PepT1 is also recognised as a major route of drug delivery for several important classes of compound, including beta-lactam antibiotics and angiotensin-converting enzyme inhibitors. Thus there is considerable interest in the PepT1 protein and especially its substrate binding site. In the absence of a crystal structure, computer modelling has been used to try to understand the relationship between PepT1 3D structure and function. Two basic approaches have been taken: modelling the transporter protein, and modelling the substrate. For the former, computer modelling has evolved from early interpretations of the twelve transmembrane domain structure to more recent homology modelling based on recently crystallised bacterial members of the major facilitator superfamily (MFS). Substrate modelling has involved the proposal of a substrate binding template, to which all substrates must conform and from which the affinity of a substrate can be estimated relatively accurately, and identification of points of potential interaction of the substrate with the protein by developing a pharmacophore model of the substrates. Most recently, these two approaches have moved closer together, with the attempted docking of a substrate library onto a homology model of the human PepT1 protein. This article will review these two approaches in which computers have been applied to peptide transport and suggest how such computer modelling could affect drug design and delivery through PepT1.
Collapse
Affiliation(s)
- David W Foley
- Faculty of Natural Sciences, Keele University, Keele, Staffs ST5 5BG, UK
| | | | | | | |
Collapse
|
18
|
Peterson LW, Sala-Rabanal M, Krylov IS, Serpi M, Kashemirov BA, McKenna CE. Serine side chain-linked peptidomimetic conjugates of cyclic HPMPC and HPMPA: synthesis and interaction with hPEPT1. Mol Pharm 2010; 7:2349-61. [PMID: 20929265 DOI: 10.1021/mp100186b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cidofovir (HPMPC), a broad spectrum antiviral agent, cannot be administered orally due to ionization of its phosphonic acid group at physiological pH. One prodrug approach involves conversion to the cyclic form (cHPMPC, 1) and esterification by the side chain hydroxyl group of a peptidomimetic serine. Transport studies in a rat model have shown enhanced levels of total cidofovir species in the plasma after oral dosing with L-Val-L-Ser-OMe cHPMPC, 2a. To explore the possibility that 2a and its three L/D stereoisomers 2b-d undergo active transport mediated by the peptide-specific intestinal transporter PEPT1, we performed radiotracer uptake and electrophysiology experiments applying the two-electrode voltage clamp technique in Xenopus laevis oocytes overexpressing human PEPT1 (hPEPT1, SLC15A1). 2a-d did not induce inward currents, indicating that they are not transported, but the stereoisomers with an L-configuration at the N-terminal valine (2a and 2b) potently inhibited transport of the hPEPT1 substrate glycylsarcosine (Gly-Sar). A "reversed" dipeptide conjugate, L-Ser-L-Ala-OiPr cHPMPC (4), also did not exhibit detectable transport, but completely abolished the Gly-Sar signal, suggesting that affinity of the transporter for these prodrugs is not impaired by a proximate linkage to the drug in the N-terminal amino acid of the dipeptide. Single amino acid conjugates of cHPMPC (3a and 3b) or cHPMPA (5, 6a and 6b) were not transported and only weakly inhibited Gly-Sar transport. The known hPEPT1 prodrug substrate valacyclovir (7) and its L-Val-L-Val dipeptide analogue (8) were used to verify coupled transport by the oocyte model. The results indicate that the previously observed enhanced oral bioavailability of 2a relative to the parent drug is unlikely to be due to active transport by hPEPT1. Syntheses of the novel compounds 2b-d and 3-6 are described, including a convenient solid-phase method to prepare 5, 6a and 6b.
Collapse
Affiliation(s)
- Larryn W Peterson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
| | | | | | | | | | | |
Collapse
|
19
|
Omkvist DH, Larsen SB, Nielsen CU, Steffansen B, Olsen L, Jørgensen FS, Brodin B. A quantitative structure-activity relationship for translocation of tripeptides via the human proton-coupled peptide transporter, hPEPT1 (SLC15A1). AAPS JOURNAL 2010; 12:385-96. [PMID: 20449699 DOI: 10.1208/s12248-010-9195-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/09/2010] [Indexed: 11/30/2022]
Abstract
The human intestinal proton-coupled peptide transporter, hPEPT1 (SLC15A1), has been identified as an absorptive transporter for both drug substances and prodrugs. An understanding of the prerequisites for transport has so far been obtained from models based on competition experiments. These models have limited value for predicting substrate translocation via hPEPT1. The aim of the present study was to investigate the requirements for translocation via hPEPT1. A set of 55 tripeptides was selected from a principal component analysis based on VolSurf descriptors using a statistical design. The majority of theses tripeptides have not previously been investigated. Translocation of the tripeptides via hPEPT1 was determined in a MDCK/hPEPT1 cell-based translocation assay measuring substrate-induced changes in fluorescence of a membrane potential-sensitive probe. Affinities for hPEPT1 of relevant tripeptides were determined by competition studies with [14C]Gly-Sar in MDCK/hPEPT1 cells. Forty tripeptides were found to be substrates for hPEPT1, having K(m)(app) values in the range 0.4-28 mM. Eight tripeptides were not able to cause a substrate-induced change in fluorescence in the translocation assay and seven tripeptides interacted with the probe itself. The conformationally restricted tripeptide Met-Pro-Pro was identified as a novel high-affinity inhibitor of hPEPT1. We also discovered the first tripeptide (Asp-Ile-Arg) that was neither a substrate nor an inhibitor of hPEPT1. To rationalise the requirements for transport, a quantitative structure-activity relationship model correlating K(m)(app) values with VolSurf descriptors was constructed. This is, to our knowledge, the first predictive model for the translocation of tripeptides via hPEPT1.
Collapse
Affiliation(s)
- Diana Højmark Omkvist
- Drug Transporters in ADME, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
Mutagenesis and cysteine scanning of transmembrane domain 10 of the human dipeptide transporter. Pharm Res 2009; 26:2358-66. [PMID: 19685173 DOI: 10.1007/s11095-009-9952-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/30/2009] [Indexed: 02/06/2023]
Abstract
PURPOSE The human dipeptide transporter (hPEPT1) facilitates transport of dipeptides and drugs from the intestine into the circulation. The role of transmembrane domain 10 (TMD10) of hPEPT1 in substrate translocation was investigated using cysteine-scanning mutagenesis with 2-Trimethylammonioethyl methanethiosulfonate (MTSET). METHODS Each amino acid in TMD10 was mutated individually to cysteine, and transport of [(3)H]Gly-Sar was evaluated with and without MTSET following transfection of each mutant in HEK293 cells. Similar localization and expression levels of wild type (WT) hPEPT1 and all mutants were confirmed by immunostaining and biotinylation followed by western blot analysis. RESULTS E595C- and G594C-hPEPT1 showed negligible Gly-Sar uptake. E595D-hPEPT1 showed similar uptake to WT-hPEPT1, but E595K- and E595R-hPEPT1 did not transport Gly-Sar. Double mutations E595K/R282E and E595R/R282E did not restore uptake. G594A-hPEPT1 showed similar uptake to WT-hPEPT1, but G594V-hPEPT1 eliminated uptake. Y588C-hPEPT1 showed uptake of 20% that of WT-hPEPT1. MTSET modification supported a model of TMD10 with an amphipathic helix from I585 to V600 and increased solvent accessibility from T601 to F605. CONCLUSIONS Our results suggest that G594 and E595 in TMD10 of hPEPT1 have key roles in substrate transport and that Y588 may have an important secondary mechanistic role.
Collapse
|
21
|
The transmembrane tyrosines Y56, Y91 and Y167 play important roles in determining the affinity and transport rate of the rabbit proton-coupled peptide transporter PepT1. Int J Biochem Cell Biol 2009; 41:2204-13. [PMID: 19389486 PMCID: PMC3510438 DOI: 10.1016/j.biocel.2009.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/09/2009] [Accepted: 04/15/2009] [Indexed: 11/24/2022]
Abstract
The mammalian proton-coupled peptide transporter PepT1 is widely accepted as the major route of uptake for dietary nitrogen, as well as being responsible for the oral absorption of a number of classes of drugs, including β-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors. Using site-directed mutagenesis and zero-trans transport assays, we investigated the role of conserved tyrosines in the transmembrane domains (TMDs) of rabbit PepT1 as predicted by hydropathy plots. All the individual TMD tyrosines were substituted with phenylalanine and shown to retain the ability to traffic to the plasma membrane of Xenopus laevis oocytes. These single substitutions of TMD tyrosines by phenylalanine residues did not affect the proton dependence of peptide uptake, with all retaining wild-type PepT1-like pH dependence. Individual mutations of four of the nine TMD residue tyrosines (Y64, Y287, Y345 and Y587) were without measurable effect on PepT1 function, whereas the other five (Y12, Y56, Y91, Y167 and Y345) were shown to result in altered transport function compared to the wild-type PepT1. Intriguingly, the affinity of Y56F-PepT1 was found to be dramatically increased (approximately 100-fold) in comparison to that of the wild-type rabbit PepT1. Y91 mutations also affected the substrate affinity of the transporter, which increased in line with the hydrophilicity of the substituted amino acid (F > Y > Q > R). Y167 was demonstrated to play a pivotal role in rabbit PepT1 function since Y167F, Y167R and Y167Q demonstrated very little transport function. These results are discussed with regard to a proposed mechanism for PepT1 substrate binding.
Collapse
|
22
|
Foley D, Pieri M, Pettecrew R, Price R, Miles S, Lam HK, Bailey P, Meredith D. The in vitro transport of model thiodipeptide prodrugs designed to target the intestinal oligopeptide transporter, PepT1. Org Biomol Chem 2009; 7:3652-6. [DOI: 10.1039/b909221h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|