1
|
Smith RJ, Milne R, Lopez VC, Wiedemar N, Dey G, Syed AJ, Patterson S, Wyllie S. Chemical pulldown combined with mass spectrometry to identify the molecular targets of antimalarials in cell-free lysates. STAR Protoc 2023; 4:102002. [PMID: 36609153 PMCID: PMC9841287 DOI: 10.1016/j.xpro.2022.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 01/08/2023] Open
Abstract
Here, we provide a protocol using chemical pulldown combined with mass spectrometry (LC-MS/MS) to identify drug targets in Plasmodium falciparum. This approach works upon the principle that a resin-bound inhibitor selectively binds its molecular target(s) in cell-free lysates. We describe the preparation of drug beads and P. falciparum lysate, followed by chemical pulldown, sample fractionation, and LC-MS/MS analysis. We then detail how to identify specifically bound proteins by comparing protein enrichment in DMSO-treated relative to drug-treated lysates via quantitative proteomics. For complete details on the use and execution of this protocol, please refer to Milne et al. (2022).1.
Collapse
Affiliation(s)
- Robert J Smith
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Rachel Milne
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoriano Corpas Lopez
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Natalie Wiedemar
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Gourav Dey
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Aisha J Syed
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen Patterson
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | - Susan Wyllie
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
2
|
Czarnecka M, Lu C, Pons J, Maheswaran I, Ciborowski P, Zhang L, Cheema A, Kitlinska J. Neuropeptide Y receptor interactions regulate its mitogenic activity. Neuropeptides 2019; 73:11-24. [PMID: 30503694 PMCID: PMC6532649 DOI: 10.1016/j.npep.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/15/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) is a multifunctional neurotransmitter acting via G protein-coupled receptors - Y1R, Y2R and Y5R. NPY activities, such as its proliferative effects, are mediated by multiple receptors, which have the ability to dimerize. However, the role of this receptor interplay in NPY functions remains unclear. The goal of the current study was to identify NPY receptor interactions, focusing on the ligand-binding fraction, and determine their impact on the mitogenic activity of the peptide. Y1R, Y2R and Y5R expressed in CHO-K1 cells formed homodimers detectable on the cell surface by cross-linking. Moreover, Y1R and Y5R heterodimerized, while no Y2R/Y5R heterodimers were detected. Nevertheless, Y5R failed to block internalization of its cognate receptor in both Y1R/Y5R and Y2R/Y5R transfectants, indicating Y5R transactivation upon stimulation of the co-expressed receptor. These receptor interactions correlated with an augmented mitogenic response to NPY. In Y1R/Y5R and Y2R/Y5R transfectants, the proliferative response started at picomolar NPY concentrations, while nanomolar concentrations were needed to trigger proliferation in cells transfected with single receptors. Thus, our data identify direct and indirect heterotypic NPY receptor interactions as the mechanism amplifying its activity. Understanding these processes is crucial for the design of treatments targeting the NPY system.
Collapse
Affiliation(s)
- Magdalena Czarnecka
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Congyi Lu
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA; New York Genome Center, New York, NY, USA
| | - Jennifer Pons
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Induja Maheswaran
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lihua Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Amrita Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Joanna Kitlinska
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
3
|
Tian Y, Zou H, An P, Zhou Z, Shen W, Lin Q. Design of Stapled Oxyntomodulin Analogs Containing Functionalized Biphenyl Cross-Linkers. Tetrahedron 2018; 75:286-295. [PMID: 30581241 DOI: 10.1016/j.tet.2018.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A panel of three lipid-modified, functionalized biphenyl cross-linkers (fBph) were synthesized and subsequently employed in the preparation of the stapled oxyntomodulin (OXM) analogs. In a luciferase-based reporter assay, these stapled OXM analogs showed varying degree of potency in activating GLP-1R and GCGR, presumably due to the disparate effect of the lipid chains on the local environment close to the ligand-receptor binding interface. In particular, the fBph-1 cross-linked peptide with the lipid chain attached to position-3 of the biphenyl cross-linker exhibited the highest dual agonist activity.
Collapse
Affiliation(s)
- Yulin Tian
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States.,Transira Therapeutics, 1576 Sweet Home Road, Baird Research Park, Amherst, New York 14228, United States
| | - Huafei Zou
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng An
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States.,Transira Therapeutics, 1576 Sweet Home Road, Baird Research Park, Amherst, New York 14228, United States
| | - Zhihong Zhou
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Weijun Shen
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States.,Transira Therapeutics, 1576 Sweet Home Road, Baird Research Park, Amherst, New York 14228, United States
| |
Collapse
|
4
|
She X, Pegoli A, Mayr J, Hübner H, Bernhardt G, Gmeiner P, Keller M. Heterodimerization of Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Leads to Increased M 2R Affinity and Selectivity. ACS OMEGA 2017; 2:6741-6754. [PMID: 30023530 PMCID: PMC6044897 DOI: 10.1021/acsomega.7b01085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/05/2017] [Indexed: 05/13/2023]
Abstract
In search for selective ligands for the muscarinic acetylcholine receptor (MR) subtype M2, the dimeric ligand approach, that is combining two pharmacophores in one and the same molecule, was pursued. Different types (agonists, antagonists, orthosteric, and allosteric) of monomeric MR ligands were combined by various linkers with a dibenzodiazepinone-type MR antagonist, affording five types of heterodimeric compounds ("DIBA-xanomeline," "DIBA-TBPB," "DIBA-77-LH-28-1," "DIBA-propantheline," and "DIBA-4-DAMP"), which showed high M2R affinities (pKi > 8.3). The heterodimeric ligand UR-SK75 (46) exhibited the highest M2R affinity and selectivity [pKi (M1R-M5R): 8.84, 10.14, 7.88, 8.59, and 7.47]. Two tritium-labeled dimeric derivatives ("DIBA-xanomeline"-type: [3H]UR-SK71 ([3H]44) and "DIBA-TBPB"-type: [3H]UR-SK59 ([3H]64)) were prepared to investigate their binding modes at hM2R. Saturation-binding experiments showed that these compounds address the orthosteric binding site of the M2R. The investigation of the effect of various allosteric MR modulators [gallamine (13), W84 (14), and LY2119620 (15)] on the equilibrium (13-15) or saturation (14) binding of [3H]64 suggested a competitive mechanism between [3H]64 and the investigated allosteric ligands, and consequently a dualsteric binding mode of 64 at the M2R.
Collapse
Affiliation(s)
- Xueke She
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andrea Pegoli
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Judith Mayr
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- E-mail: . Phone: (+49)941-9433329.
Fax: (+49)941-9434820 (M.K.)
| |
Collapse
|
5
|
Kuhn K, Littmann T, Dukorn S, Tanaka M, Keller M, Ozawa T, Bernhardt G, Buschauer A. In Search of NPY Y 4R Antagonists: Incorporation of Carbamoylated Arginine, Aza-Amino Acids, or d-Amino Acids into Oligopeptides Derived from the C-Termini of the Endogenous Agonists. ACS OMEGA 2017; 2:3616-3631. [PMID: 30023699 PMCID: PMC6044894 DOI: 10.1021/acsomega.7b00451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The cross-linked pentapeptides (2R,7R)-diaminooctanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) ((2R,7R)-BVD-74D, (2R,7R)-1) and octanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) (2) as well as the pentapeptide Ac-Tyr-Arg-Leu-Arg-Tyr-amide (3) were previously described as neuropeptide Y Y4 receptor (Y4R) partial agonists. Here, we report on a series of analogues of (2R,7R)-1 and 2 in which Arg2, Leu3, or Arg4 were replaced by the respective aza-amino acids. The replacement of Arg2 in 3 with a carbamoylated arginine building block and the extension of the N-terminus by an additional arginine led to the high-affinity hexapeptide Ac-Arg-Tyr-Nω-[(4-aminobutyl)aminocarbonyl]Arg-Leu-Arg-Tyr-amide (35), which was used as a precursor for a d-amino acid scan. The target compounds were investigated for Y4R functional activity in assays with complementary readouts: aequorin Ca2+ and β-arrestin 1 or β-arrestin 2 assays. In contrast to the parent compounds, which are Y4R agonists, several ligands were able to suppress the effect elicited by the endogenous ligand pancreatic polypeptide and therefore represent a novel class of peptide Y4R antagonists.
Collapse
Affiliation(s)
- Kilian
K. Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Miho Tanaka
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Takeaki Ozawa
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| |
Collapse
|
6
|
Keller M, Maschauer S, Brennauer A, Tripal P, Koglin N, Dittrich R, Bernhardt G, Kuwert T, Wester HJ, Buschauer A, Prante O. Prototypic 18F-Labeled Argininamide-Type Neuropeptide Y Y 1R Antagonists as Tracers for PET Imaging of Mammary Carcinoma. ACS Med Chem Lett 2017; 8:304-309. [PMID: 28337321 DOI: 10.1021/acsmedchemlett.6b00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/24/2022] Open
Abstract
The neuropeptide Y (NPY) Y1 receptor (Y1R) selective radioligand (R)-Nα-(2,2-diphenylacetyl)-Nω-[4-(2-[18F]fluoropropanoylamino)butyl]aminocarbonyl-N-(4-hydroxybenzyl)argininamide ([18F]23), derived from the high-affinity Y1R antagonist BIBP3226, was developed for imaging studies of Y1R-positive tumors. Starting from the argininamide core bearing amine-functionalized spacer moieties, a series of fluoropropanoylated and fluorobenzoylated derivatives was synthesized and studied for Y1R affinity. The fluoropropanoylated derivative 23 displayed high affinity (Ki = 1.3 nM) and selectivity toward Y1R. Radiosynthesis was accomplished via 18F-fluoropropanoylation, yielding [18F]23 with excellent stability in mice; however, the biodistribution study revealed pronounced hepatobiliary clearance with high accumulation in the gall bladder (>100 %ID/g). Despite the unfavorable biodistribution, [18F]23 was successfully used for imaging of Y1R positive MCF-7 tumors in nude mice. Therefore, we suggest [18F]23 as a lead for the design of PET ligands with optimized physicochemical properties resulting in more favorable biodistribution and higher Y1R-dependent enrichment in mammary carcinoma.
Collapse
Affiliation(s)
- Max Keller
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Simone Maschauer
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Albert Brennauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Philipp Tripal
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Norman Koglin
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Ralf Dittrich
- Department
of Obstetrics and Gynecology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 21/23, D-91054 Erlangen, Germany
| | - Günther Bernhardt
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Torsten Kuwert
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Hans-Jürgen Wester
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Armin Buschauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Olaf Prante
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
7
|
Kuhn KK, Ertl T, Dukorn S, Keller M, Bernhardt G, Reiser O, Buschauer A. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J Med Chem 2016; 59:6045-58. [DOI: 10.1021/acs.jmedchem.6b00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kilian K. Kuhn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Stefanie Dukorn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Keller M, Kuhn KK, Einsiedel J, Hübner H, Biselli S, Mollereau C, Wifling D, Svobodová J, Bernhardt G, Cabrele C, Vanderheyden PML, Gmeiner P, Buschauer A. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. J Med Chem 2016; 59:1925-45. [PMID: 26824643 DOI: 10.1021/acs.jmedchem.5b01495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
Collapse
Affiliation(s)
- Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Kilian K Kuhn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale, CNRS/IPBS , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jaroslava Svobodová
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Patrick M L Vanderheyden
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
9
|
Keller M, Schindler L, Bernhardt G, Buschauer A. Toward Labeled Argininamide-Type NPY Y1Receptor Antagonists: Identification of a Favorable Propionylation Site in BIBO3304. Arch Pharm (Weinheim) 2015; 348:390-8. [DOI: 10.1002/ardp.201400427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Lisa Schindler
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Günther Bernhardt
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Armin Buschauer
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| |
Collapse
|
10
|
Rauf MK, Imtiaz-ud-Din, Badshah A. Novel approaches to screening guanidine derivatives. Expert Opin Drug Discov 2013; 9:39-53. [PMID: 24261559 DOI: 10.1517/17460441.2013.857308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Compounds containing guanidine moiety, originating both from natural and synthetic sources, have found potential applications in both synthetic and medicinal chemistry. Indeed, guanidine functionality can be found in many natural and pharmaceutical products as well as in cosmetic ingredients produced by synthetic methods. AREAS COVERED This review covers the latest developments in the research undertaken for the therapeutic application of newly synthesized guanidine derivatives including: small peptides and peptidomimetics. This article encompasses the selected literature published in the last three decades with a focus on the novel approaches for screening of lead drug candidates with their pharmacological action. EXPERT OPINION Guanidines, as they are both organically based and also hydrophilic in nature, have undergone a mammoth amount of screening and testing to discover promising lead structures with a CN3 core, appropriate for potential future drug development. The compounds have the potential to be neurodegenerative therapeutic options, as well as: anti-inflammatory, anti-protozoal, anti-HIV, chemotherapeutic, anti-diabetic agents and so on. It is true that guanidine-based compounds of natural sources also, like synthetic and virtually designed drugs, have been of significant interest and have the potential to be useful therapeutic options in the future. As for now, however, there is not sufficient data to support their use in a number of the suggested areas, and further studies are required.
Collapse
|
11
|
Dimeric argininamide-type neuropeptide Y receptor antagonists: Chiral discrimination between Y1 and Y4 receptors. Bioorg Med Chem 2013; 21:6303-22. [DOI: 10.1016/j.bmc.2013.08.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022]
|
12
|
Barlow N, Baker SP, Scammells PJ. Effect of Linker Length and Composition on Heterobivalent Ligand-Mediated Receptor Cross-Talk between the A1Adenosine and β2Adrenergic Receptors. ChemMedChem 2013; 8:2036-46. [DOI: 10.1002/cmdc.201300286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 01/09/2023]
|
13
|
Raju R, Piggott AM, Quezada M, Capon RJ. Nocardiopsins C and D and nocardiopyrone A: new polyketides from an Australian marine-derived Nocardiopsis sp. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.10.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Keller M, Bernhardt G, Buschauer A. [3H]UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide Y Y1 Receptors. ChemMedChem 2011; 6:1566-71. [DOI: 10.1002/cmdc.201100197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Indexed: 11/11/2022]
|
15
|
Weiss S, Bernhardt G, Buschauer A, König B. Synthesis and characterization of DMAP-modified NPY Y1 receptor antagonists as acyl-transfer catalysts. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Starting from the working hypothesis that specific chemical labelling may be an attractive approach to detect and study G protein-coupled receptors (GPCRs) we synthesized catalytically active antagonists of the neuropeptide Y1 receptor (Y1R). An argininamide-type Y1R antagonist scaffold was combined with a DMAP moiety via spacers of different length and chemical nature. These hybrid compounds have Y1R affinities in the two-digit nanomolar range and are capable of catalysing acyl-transfer reaction to surrogates of bionucleophiles, as demonstrated in the absence of cells by using esters of fluorescent dyes as substrates in buffer. By contrast, selective staining of Y1Rs on living MCF-7 cells was not achieved due to significant non-catalysed (Y1R ligand independent) reaction with biomolecules and the limited density of Y1R on the cell surface. Although this may also depend on insufficient selectivity of the staining reagents, the results of this study suggest that the general applicability of catalytic staining to GPCRs has to be reconsidered, as this approach is hampered by a very low portion of receptor of interest compared to the total amount of membrane proteins.
Collapse
|
16
|
Red-fluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools. Bioorg Med Chem 2011; 19:2859-78. [DOI: 10.1016/j.bmc.2011.03.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022]
|
17
|
Weiss S, Keller M, Bernhardt G, Buschauer A, König B. NG-Acyl-argininamides as NPY Y1 receptor antagonists: Influence of structurally diverse acyl substituents on stability and affinity. Bioorg Med Chem 2010; 18:6292-304. [DOI: 10.1016/j.bmc.2010.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 07/03/2010] [Accepted: 07/10/2010] [Indexed: 11/30/2022]
|