1
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
2
|
Cheuka PM, Dziwornu G, Okombo J, Chibale K. Plasmepsin Inhibitors in Antimalarial Drug Discovery: Medicinal Chemistry and Target Validation (2000 to Present). J Med Chem 2020; 63:4445-4467. [PMID: 31913032 DOI: 10.1021/acs.jmedchem.9b01622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmepsins represent novel antimalarial drug targets. However, plasmepsin-based antimalarial drug discovery efforts in the past 2 decades have generally suffered some drawbacks including lack of translatability of target inhibition to potent parasite inhibition in vitro and in vivo as well as poor selectivity over the related human aspartic proteases. Most studies reported in this period have over-relied on the use of hemoglobinase plasmepsins I-IV (particularly I and II) as targets for the new inhibitors even though these are known to be nonessential at the asexual stage of parasite development. Therefore, future antimalarial drug discovery efforts seeking to identify plasmepsin inhibitors should focus on incorporating non-hemoglobinase plasmepsins such as V, IX, and X in their screening in order to maximize chances of success. Additionally, there is need to go beyond just target enzymatic activity profiling to establishing cellular activity, physicochemical as well as drug metabolism and pharmacokinetics properties and finally in vivo proof-of-concept while ensuring selectivity over related human host proteases.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia
| | - Godwin Dziwornu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
3
|
Bobrovs R, Jaudzems K, Jirgensons A. Exploiting Structural Dynamics To Design Open-Flap Inhibitors of Malarial Aspartic Proteases. J Med Chem 2019; 62:8931-8950. [DOI: 10.1021/acs.jmedchem.9b00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Raitis Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| |
Collapse
|
4
|
Meyers MJ, Liu J, Xu J, Leng F, Guan J, Liu Z, McNitt SA, Qin L, Dai L, Ma H, Adah D, Zhao S, Li X, Polino AJ, Nasamu AS, Goldberg DE, Liu X, Lu Y, Tu Z, Chen X, Tortorella MD. 4-Aryl Pyrrolidines as a Novel Class of Orally Efficacious Antimalarial Agents. Part 1: Evaluation of 4-Aryl- N-benzylpyrrolidine-3-carboxamides. J Med Chem 2019; 62:3503-3512. [PMID: 30856324 PMCID: PMC6727846 DOI: 10.1021/acs.jmedchem.8b01972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identification of novel chemotypes with antimalarial efficacy is imperative to combat the rise of Plasmodium species resistant to current antimalarial drugs. We have used a hybrid target-phenotype approach to identify and evaluate novel chemotypes for malaria. In our search for drug-like aspartic protease inhibitors in publicly available phenotypic antimalarial databases, we identified GNF-Pf-4691, a 4-aryl- N-benzylpyrrolidine-3-carboxamide, as having a structure reminiscent of known inhibitors of aspartic proteases. Extensive profiling of the two terminal aryl rings revealed a structure-activity relationship in which relatively few substituents are tolerated at the benzylic position, but the 3-aryl position tolerates a range of hydrophobic groups and some heterocycles. Out of this effort, we identified (+)-54b (CWHM-1008) as a lead compound. 54b has EC50 values of 46 and 21 nM against drug-sensitive Plasmodium falciparum 3D7 and drug-resistant Dd2 strains, respectively. Furthermore, 54b has a long half-life in mice (4.4 h) and is orally efficacious in a mouse model of malaria (qd; ED99 ∼ 30 mg/kg/day). Thus, the 4-aryl- N-benzylpyrrolidine-3-carboxamide chemotype is a promising novel chemotype for malaria drug discovery.
Collapse
Affiliation(s)
- Marvin J Meyers
- Department of Chemistry , Saint Louis University , Saint Louis , Missouri 63103 , United States
- Center for World Health and Medicine , Saint Louis University School of Medicine , Saint Louis , Missouri 63104 , United States
| | - Jianguang Liu
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Jing Xu
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Fang Leng
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Jiantong Guan
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Zhijun Liu
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Sarah A McNitt
- Department of Chemistry , Saint Louis University , Saint Louis , Missouri 63103 , United States
- Center for World Health and Medicine , Saint Louis University School of Medicine , Saint Louis , Missouri 63104 , United States
| | - Limei Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Linglin Dai
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Hongwei Ma
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Dickson Adah
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Xiaofen Li
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Alex J Polino
- Departments of Medicine and Molecular Microbiology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| | - Armiyaw S Nasamu
- Departments of Medicine and Molecular Microbiology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| | - Xiaorong Liu
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Yongzhi Lu
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Zhengchao Tu
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
| | - Micky D Tortorella
- Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , China
- Legion/Lijien Pharmaceuticals , Guangzhou 510530 , China
| |
Collapse
|
5
|
Coburger I, Schaub Y, Roeser D, Hardes K, Maeder P, Klee N, Steinmetzer T, Imhof D, Diederich WE, Than ME. Identification of inhibitors of the transmembrane protease FlaK of Methanococcus maripaludis. Microbiologyopen 2016; 5:637-46. [PMID: 27038342 PMCID: PMC4985597 DOI: 10.1002/mbo3.358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/17/2023] Open
Abstract
GxGD‐type intramembrane cleaving proteases (I‐CLiPs) form a family of proteolytic enzymes that feature an aspartate‐based catalytic mechanism. Yet, they structurally and functionally largely differ from the classical pepsin‐like aspartic proteases. Among them are the archaeal enzyme FlaK, processing its substrate FlaB2 during the formation of flagella and γ‐secretase, which is centrally involved in the etiology of the neurodegenerative Alzheimer's disease. We developed an optimized activity assay for FlaK and based on screening of a small in‐house library and chemical synthesis, we identified compound 9 as the first inhibitor of this enzyme. Our results show that this intramembrane protease differs from classical pepsin‐like aspartic proteases and give insights into the substrate recognition of this enzyme. By providing the needed tools to further study the enzymatic cycle of FlaK, our results also enable further studies towards a functional understanding of other GxGD‐type I‐CLiPs.
Collapse
Affiliation(s)
- Ina Coburger
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Yvonne Schaub
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Dirk Roeser
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Kornelia Hardes
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Patrick Maeder
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Nina Klee
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Diana Imhof
- Institute of Pharmacy, Pharmaceutical Chemistry I, University of Bonn, Brühler Str. 7, Bonn, 53119, Germany
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Manuel E Than
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| |
Collapse
|
6
|
Aneja B, Kumar B, Jairajpuri MA, Abid M. A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra19673f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article provides a comprehensive review of inhibitors from natural, semisynthetic or synthetic sources against key targets ofPlasmodium falciparum.
Collapse
Affiliation(s)
- Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Bhumika Kumar
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| |
Collapse
|
7
|
Kuhnert M, Blum A, Steuber H, Diederich WE. Privileged Structures Meet Human T-Cell Leukemia Virus-1 (HTLV-1): C2-Symmetric 3,4-Disubstituted Pyrrolidines as Nonpeptidic HTLV-1 Protease Inhibitors. J Med Chem 2015; 58:4845-50. [PMID: 26000468 DOI: 10.1021/acs.jmedchem.5b00346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-disubstituted pyrrolidines originally designed to inhibit the closely related HIV-1 protease were evaluated as privileged structures against HTLV-1 protease (HTLV-1 PR). The most potent inhibitor of this series exhibits two-digit nanomolar affinity and represents, to the best of our knowledge, the most potent nonpeptidic inhibitor of HTLV-1 PR described so far. The X-ray structures of two representatives bound to HTLV-1 PR were determined, and the structural basis of their affinity is discussed.
Collapse
Affiliation(s)
- Maren Kuhnert
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Andreas Blum
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Holger Steuber
- ‡LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Wibke E Diederich
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| |
Collapse
|
8
|
Huizing AP, Mondal M, Hirsch AKH. Fighting malaria: structure-guided discovery of nonpeptidomimetic plasmepsin inhibitors. J Med Chem 2015; 58:5151-63. [PMID: 25719272 DOI: 10.1021/jm5014133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmepsins (Plms) are aspartic proteases involved in the degradation of human hemoglobin by Plasmodium falciparum. Given that the parasite needs the resulting amino acid building blocks for its growth and development, plasmepsins are an important antimalarial drug target. Over the past decade, tremendous progress has been achieved in the development of inhibitors of plasmepsin using two strategies: structure-based drug design (SBDD) and structure-based virtual screening (SBVS). Herein, we review the inhibitors of Plms I-IV developed by SBDD or SBVS with a particular focus on obtaining selectivity versus the human Asp proteases cathepsins and renin and activity in cell-based assays. By use of SBDD, the flap pocket of Plm II has been discovered and constitutes a convenient handle to obtain selectivity. In SBVS, activity against Plms I-IV and selectivity versus cathepsins are not always taken into account. A combination of SBVS, SBDD, and molecular dynamics simulations opens up opportunities for future design cycles.
Collapse
Affiliation(s)
- Anja P Huizing
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Milon Mondal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Aureggi V, Ehmke V, Wieland J, Schweizer WB, Bernet B, Bur D, Meyer S, Rottmann M, Freymond C, Brun R, Breit B, Diederich F. Potent inhibitors of malarial aspartic proteases, the plasmepsins, by hydroformylation of substituted 7-azanorbornenes. Chemistry 2012; 19:155-64. [PMID: 23161835 DOI: 10.1002/chem.201202941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Indexed: 12/23/2022]
Abstract
The increasing prevalence of multidrug-resistant strains of the malarial parasite Plasmodium falciparum requires the urgent development of new therapeutic agents with novel modes of action. The vacuolar malarial aspartic proteases plasmepsin (PM) I, II, and IV are involved in hemoglobin degradation and play a central role in the growth and maturation of the parasite in the human host. We report the structure-based design, synthesis, and in vitro evaluation of a new generation of PM inhibitors featuring a highly decorated 7-azabicyclo[2.2.1]heptane core. While this protonated central core addresses the catalytic Asp dyad, three substituents bind to the flap, the S1/S3, and the S1' pockets of the enzymes. A hydroformylation reaction is the key synthetic step for the introduction of the new vector reaching into the S1' pocket. The configuration of the racemic ligands was confirmed by extensive NMR and X-ray crystallographic analysis. In vitro biological assays revealed high potency of the new inhibitors against the three plasmepsins (IC(50) values down to 6 nM) and good selectivity towards the closely related human cathepsins D and E. The occupancy of the S1' pocket makes an essential contribution to the gain in binding affinity and selectivity, which is particularly large in the case of the PM IV enzyme. Designing non-peptidic ligands for PM II is a valid route to generate compounds that inhibit the entire family of vacuolar plasmepsins.
Collapse
Affiliation(s)
- Valentina Aureggi
- Laboratorium für Organische Chemie, ETH Zurich, Hönggerberg HCI, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Computational perspectives into plasmepsins structure-function relationship: implications to inhibitors design. J Trop Med 2011; 2011:657483. [PMID: 21760810 PMCID: PMC3134243 DOI: 10.1155/2011/657483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/01/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
The development of efficient and selective antimalariais remains a challenge for the pharmaceutical industry. The aspartic proteases plasmepsins, whose inhibition leads to parasite death, are classified as targets for the design of potent drugs. Combinatorial synthesis is currently being used to generate inhibitor libraries for these enzymes, and together with computational methodologies have been demonstrated capable for the selection of lead compounds. The high structural flexibility of plasmepsins, revealed by their X-ray structures and molecular dynamics simulations, made even more complicated the prediction of putative binding modes, and therefore, the use of common computational tools, like docking and free-energy calculations. In this review, we revised the computational strategies utilized so far, for the structure-function relationship studies concerning the plasmepsin family, with special focus on the recent advances in the improvement of the linear interaction estimation (LIE) method, which is one of the most successful methodologies in the evaluation of plasmepsin-inhibitor binding affinity.
Collapse
|
11
|
Zucca M, Savoia D. Current developments in the therapy of protozoan infections. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:4-10. [PMID: 21629507 PMCID: PMC3103884 DOI: 10.2174/1874104501105010004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/25/2010] [Accepted: 06/20/2010] [Indexed: 12/03/2022]
Abstract
Protozoan parasites cause serious human and zoonotic infections, including life-threatening diseases such as malaria, African and American trypanosomiasis, and leishmaniasis. These diseases are no more common in the developed world, but together they still threaten about 40% of the world population (WHO estimates). Mortality and morbidity are high in developing countries, and the lack of vaccines makes chemotherapy the only suitable option. However, available antiparasitic drugs are hampered by more or less marked toxic side effects and by the emergence of drug resistance. As the main prevalence of parasitic diseases occurs in the poorest areas of the world, the interest of the pharmaceutical companies in the development of new drugs has been traditionally scarce. The establishment of public-private partnerships focused on tropical diseases is changing this situation, allowing the exploitation of the technological advances that took place during the past decade related to genomics, proteomics, and in silico drug discovery approaches. These techniques allowed the identification of new molecular targets that in some cases are shared by different parasites. In this review we outline the recent developments in the fields of protease and topoisomerase inhibitors, antimicrobial and cell-penetrating peptides, and RNA interference. We also report on the rapidly developing field of new vectors (micro and nano particles, mesoporous materials) that in some cases can cross host or parasite natural barriers and, by selectively delivering new or already in use drugs to the target site, minimize dosage and side effects.
Collapse
Affiliation(s)
- Mario Zucca
- Department of Clinical and Biological Sciences, University of Torino, Italy
| | | |
Collapse
|