1
|
Kowalczyk K, Błauż A, Krawczyk K, Rychlik B, Plażuk D. Design and synthesis of ferrocenyl 1,4-dihydropyridines and their evaluation as kinesin-5 inhibitors. Dalton Trans 2024; 53:16038-16053. [PMID: 39291736 DOI: 10.1039/d4dt01853b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Kinesin-5 inhibitors offer cancer cell-targeted approach, thus securing reduced systemic toxicity compared to other antimitotic agents. By modifying the 1,4-dihydropyridine-based kinesin-5 inhibitor CPUYL064 with a ferrocenyl moiety (Fc), we designed and prepared a series of organometallic hybrids that show high antiproliferative activity, with the best compounds exhibiting up to 19-fold increased activity. This enhanced activity can be attributed to the presence of the ferrocenyl moiety.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| | - Andrzej Błauż
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Krzysztof Krawczyk
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Błażej Rychlik
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
2
|
Łomzik M, Błauż A, Tchoń D, Makal A, Rychlik B, Plażuk D. Development of Half-Sandwich Ru, Os, Rh, and Ir Complexes Bearing the Pyridine-2-ylmethanimine Bidentate Ligand Derived from 7-Chloroquinazolin-4(3H)-one with Enhanced Antiproliferative Activity. ACS OMEGA 2024; 9:18224-18237. [PMID: 38680348 PMCID: PMC11044151 DOI: 10.1021/acsomega.3c10482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Kinesin spindle protein (KSP) inhibitors are one of the most promising anticancer agents developed in recent years. Herein, we report the synthesis of ispinesib-core pyridine derivative conjugates, which are potent KSP inhibitors, with half-sandwich complexes of ruthenium, osmium, rhodium, and iridium. Conjugation of 7-chloroquinazolin-4(3H)-one with the pyridine-2-ylmethylimine group and the organometallic moiety resulted in up to a 36-fold increased cytotoxicity with IC50 values in the micromolar and nanomolar range also toward drug-resistant cells. All studied conjugates increased the percentage of cells in the G2/M phase, simultaneously decreasing the number of cells in the G1/G0 phase, suggesting mitotic arrest. Additionally, ruthenium derivatives were able to generate reactive oxygen species (ROS); however, no significant influence of the organometallic moiety on KSP inhibition was observed, which suggests that conjugation of a KSP inhibitor with the organometallic moiety modulates its mechanism of action.
Collapse
Affiliation(s)
- Michał Łomzik
- Faculty
of Chemistry, Department of Organic Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland
| | - Andrzej Błauż
- Faculty
of Biology and Environmental Protection, Department of Oncobiology
and Epigenetics, Cytometry Lab, University
of Lodz, ul. Pomorska
141/143, 90-236 Łódź, Poland
| | - Daniel Tchoń
- Laboratory
for Structural and Biochemical Research (LBSBio), Biological and Chemical
Research Centre, Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warszawa, Poland
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anna Makal
- Laboratory
for Structural and Biochemical Research (LBSBio), Biological and Chemical
Research Centre, Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Błażej Rychlik
- Faculty
of Biology and Environmental Protection, Department of Oncobiology
and Epigenetics, Cytometry Lab, University
of Lodz, ul. Pomorska
141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Faculty
of Chemistry, Department of Organic Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
3
|
Buchanan D, Pham AM, Singh SK, Panda SS. Molecular Hybridization of Alkaloids Using 1,2,3-Triazole-Based Click Chemistry. Molecules 2023; 28:7593. [PMID: 38005315 PMCID: PMC10674395 DOI: 10.3390/molecules28227593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Alkaloids found in multiple species, known as 'driver species', are more likely to be included in early-stage drug development due to their high biodiversity compared to rare alkaloids. Many synthetic approaches have been employed to hybridize the natural alkaloids in drug development. Click chemistry is a highly efficient and versatile reaction targeting specific areas, making it a valuable tool for creating complex natural products and diverse molecular structures. It has been used to create hybrid alkaloids that address their limitations and serve as potential drugs that mimic natural products. In this review, we highlight the recent advancements made in modifying alkaloids using click chemistry and their potential medicinal applications. We discuss the significance, current trends, and prospects of click chemistry in natural product-based medicine. Furthermore, we have employed computational methods to evaluate the ADMET properties and drug-like qualities of hybrid molecules.
Collapse
Affiliation(s)
- Devan Buchanan
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (A.M.P.)
| | - Ashley M. Pham
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (A.M.P.)
| | - Sandeep K. Singh
- Jindal Global Business School, OP Jindal Global University, Sonipat 131001, India;
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (A.M.P.)
- Department Biochemistry and Molecular Biology, Augusta University Augusta, GA 30912, USA
| |
Collapse
|
4
|
Kowalczyk K, Błauż A, Moscoh Ayine-Tora D, Hartinger CG, Rychlik B, Plażuk D. Design, Synthesis, and Evaluation of Biological Activity of Ferrocene-Ispinesib Hybrids: Impact of a Ferrocenyl Group on the Antiproliferative and Kinesin Spindle Protein Inhibitory Activity. Chemistry 2023; 29:e202300813. [PMID: 37332065 DOI: 10.1002/chem.202300813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
With the aim to combine more than one biologically-active component in a single molecule, derivatives of ispinesib and its (S) analogue were prepared that featured ferrocenyl moieties or bulky organic substituents. Inspired by the strong kinesin spindle protein (KSP) inhibitory activity of ispinesib, the compounds were investigated for their antiproliferative activity. Among these compounds, several derivatives demonstrated significantly higher antiproliferative activity than ispinesib with nanomolar IC50 values against cell lines. Further evaluation indicated that the antiproliferative activity is not directly correlated with their KSP inhibitory activity while docking suggested that several of the derivatives may bind in a manner similar to ispinesib. In order to investigate the mode of action further, cell cycle analysis and reactive oxygen species formation were investigated. The improved antiproliferative activity of the most active compounds may be assigned to synergic effects of various factors such as KSP inhibitory activity due to the ispinesib core and ability to generate ROS and induce mitotic arrest.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry Faculty of Chemistry, University of Lodz ul. Tamka 12, 91-403, Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz ul. Pomorska 141/143, 90-236, Łódź, Poland
| | | | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Błażej Rychlik
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry Faculty of Chemistry, University of Lodz ul. Tamka 12, 91-403, Łódź, Poland
| |
Collapse
|
5
|
Kowalski K. A brief survey on the application of metal-catalyzed azide–alkyne cycloaddition reactions to the synthesis of ferrocenyl-x-1,2,3-triazolyl-R (x = none or a linker and R = organic entity) compounds with anticancer activity. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Alexeev AA, Nurieva EV, Elisseev IA, Milaeva ER, Lyssenko KA, Zefirova ON. Bicyclic isothioureas for conjugation with tubulin targeted anticancer agents. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Stein A, Hilken née Thomopoulou P, Frias C, Hopff SM, Varela P, Wilke N, Mariappan A, Neudörfl JM, Fedorov AY, Gopalakrishnan J, Gigant B, Prokop A, Schmalz HG. B-nor-methylene Colchicinoid PT-100 Selectively Induces Apoptosis in Multidrug-Resistant Human Cancer Cells via an Intrinsic Pathway in a Caspase-Independent Manner. ACS OMEGA 2022; 7:2591-2603. [PMID: 35097257 PMCID: PMC8792921 DOI: 10.1021/acsomega.1c04659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/31/2021] [Indexed: 05/14/2023]
Abstract
Colchicine, the main active alkaloid from Colchicum autumnale L., is a potent tubulin binder and represents an interesting lead structure for the development of potential anticancer chemotherapeutics. We report on the synthesis and investigation of potentially reactive colchicinoids and their surprising biological activities. In particular, the previously undescribed colchicinoid PT-100, a B-ring contracted 6-exo-methylene colchicinoid, exhibits extraordinarily high antiproliferative and apoptosis-inducing effects on various types of cancer cell lines like acute lymphoblastic leukemia (Nalm6), acute myeloid leukemia (HL-60), Burkitt-like lymphoma (BJAB), human melanoma (MelHO), and human breast adenocarcinoma (MCF7) cells at low nanomolar concentrations. Apoptosis induction proved to be especially high in multidrug-resistant Nalm6-derived cancer cell lines, while healthy human leukocytes and hepatocytes were not affected by the concentration range studied. Furthermore, caspase-independent initiation of apoptosis via an intrinsic pathway was observed. PT-100 also shows strong synergistic effects in combination with vincristine on BJAB and Nalm6 cells. Cocrystallization of PT-100 with tubulin dimers revealed its (noncovalent) binding to the colchicine-binding site of β-tubulin at the interface to the α-subunit. A pronounced effect of PT-100 on the cytoskeleton morphology was shown by fluorescence microscopy. While the reactivity of PT-100 as a weak Michael acceptor toward thiols was chemically proven, it remains unclear whether this contributes to the remarkable biological properties of this unusual colchicinoid.
Collapse
Affiliation(s)
- Andreas Stein
- Department
of Chemistry, University of Cologne, 50939 Cologne, Germany
| | | | - Corazon Frias
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Sina M. Hopff
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Paloma Varela
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Nicola Wilke
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Arul Mariappan
- Laboratory
for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Alexey Yu Fedorov
- Department
of Organic Chemistry, N.I. Lobachevsky State
University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russian
Federation
| | - Jay Gopalakrishnan
- Laboratory
for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Benoît Gigant
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Aram Prokop
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
- Department
of Pediatric Hematology/Oncology, Helios
Clinic Schwerin, 19055 Schwerin, Germany
- MSH
Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | | |
Collapse
|
8
|
Pyta K, Skrzypczak N, Ruszkowski P, Bartl F, Przybylski P. Regioselective approach to colchiceine tropolone ring functionalization at C(9) and C(10) yielding new anticancer hybrid derivatives containing heterocyclic structural motifs. J Enzyme Inhib Med Chem 2022; 37:597-605. [PMID: 35067138 PMCID: PMC8788354 DOI: 10.1080/14756366.2022.2028782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The influence of base type, temperature, and solvent on regioselective C(9)/C(10) “click” modifications within the tropolone ring of colchiceine (2) is investigated. New ether derivatives of 2, bearing alkyne, azide, vinyl, or halide aryl groups enable assembly of the alkaloid part with heterocycles or important biomolecules such as saccharides, geldanamycin or AZT into hybrid scaffolds by dipolar cycloaddition (CuAAC) or Heck reaction. Compared to colchicine (1) or colchiceine (2), ether congeners, as e.g. 3e [IC50s(3e) ∼ 0.9 nM], show improved or similar anticancer effects, whereby the bulkiness of the substituents and the substitution pattern of the tropolone proved to be essential. Biological studies reveal that expanding the ether arms by terminal basic heterocycles as quinoline or pyridine, decreases the toxicity in HDF cells at high anticancer potency (IC50s ∼ 1–2 nM). Docking of ether and hybrid derivatives into the colchicine pocket of αGTP/β tubulin dimers reveals a relationship between the favourable binding mode and the attractive anticancer potency.
Collapse
Affiliation(s)
- Krystian Pyta
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Franz Bartl
- Lebenswissenschaftliche Fakultät, Institut für Biologie, Biophysikalische Chemie Humboldt-Universität zu Berlin Invalidenstraße 42, Berlin, Germany
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
9
|
Stein A, Hilken née Thomopoulou P, Schulte T, Neudörfl J, Breugst M, Schmalz H. Some Surprising Transformations of Colchicone and Other Colchicine‐Derived Tropolones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Stein
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | | | - Tim Schulte
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Jörg Neudörfl
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Martin Breugst
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Hans‐Günther Schmalz
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| |
Collapse
|
10
|
Krzywik J, Nasulewicz-Goldeman A, Mozga W, Wietrzyk J, Huczyński A. Novel Double-Modified Colchicine Derivatives Bearing 1,2,3-Triazole: Design, Synthesis, and Biological Activity Evaluation. ACS OMEGA 2021; 6:26583-26600. [PMID: 34661013 PMCID: PMC8515607 DOI: 10.1021/acsomega.1c03948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/15/2021] [Indexed: 05/08/2023]
Abstract
A series of 1,4-disubstituted 1,2,3-triazoles having 10-demethoxy-10-N-methylaminocolchicine core were designed and synthesized via the Cu(I)-catalyzed "click" reaction and screened for their in vitro cytotoxicity against four cancer cell lines (A549, MCF-7, LoVo, LoVo/DX) and one noncancerous cell line (BALB/3T3). Indexes of resistance (RI) and selectivity (SI) were also determined to assess the potential of the analogues to break drug resistance of the LoVo/DX cells and to verify their selectivity toward killing cancer cells over normal cells. The compounds with an ester or amide moiety in the fourth position of 1,2,3-triazole of 10-N-methylaminocolchicine turned out to have the greatest therapeutic potential (low IC50 values and favorable SI values), much better than that of unmodified colchicine or doxorubicin and cisplatin. Thus, they make a valuable clue for the further search for a drug having a colchicine scaffold.
Collapse
Affiliation(s)
- Julia Krzywik
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- TriMen
Chemicals, Piłsudskiego
141, 92-318 Łódź, Poland
| | - Anna Nasulewicz-Goldeman
- Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Witold Mozga
- TriMen
Chemicals, Piłsudskiego
141, 92-318 Łódź, Poland
| | - Joanna Wietrzyk
- Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Adam Huczyński
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- . Tel: +48618291673
| |
Collapse
|
11
|
Chrabąszcz K, Błauż A, Gruchała M, Wachulec M, Rychlik B, Plażuk D. Synthesis and Biological Activity of Ferrocenyl and Ruthenocenyl Analogues of Etoposide: Discovery of a Novel Dual Inhibitor of Topoisomerase II Activity and Tubulin Polymerization. Chemistry 2021; 27:6254-6262. [PMID: 33465263 DOI: 10.1002/chem.202005133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Two series of the ferrocenyl and ruthenocenyl analogues of etoposide bearing 1,2,3-triazolyl or aminoalkyl linker were synthesized and evaluated for their cytotoxic properties, influence on the cell cycle, ability to induce tubulin polymerization, and inhibition of topoisomerase II activity. We found that the replacement of the etoposide carbohydrate moiety with a metallocenyl group led to organometallic conjugates exhibiting differentiated antiproliferative activity. Biological studies demonstrated that two ferrocenylalkylamino conjugates were notably more active than etoposide, with submicromolar or low-micromolar IC50 values towards SW620, etoposide-resistant SW620E, and methotrexate-resistant SW620M cancer cell lines. Moreover, the simplest ferrocenylmethylamino conjugate exerted dual inhibitory action against tubulin polymerization and topoisomerase II activity while other studied compounds affected only topoisomerase II activity.
Collapse
Affiliation(s)
- Karolina Chrabąszcz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403, Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Martyna Gruchała
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Marcin Wachulec
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403, Łódź, Poland
| |
Collapse
|
12
|
|
13
|
Łomzik M, Hanif M, Budniok A, Błauż A, Makal A, Tchoń DM, Leśniewska B, Tong KKH, Movassaghi S, Söhnel T, Jamieson SMF, Zafar A, Reynisson J, Rychlik B, Hartinger CG, Plażuk D. Metal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of Ispinesib-Derived Ligands. Inorg Chem 2020; 59:14879-14890. [PMID: 33003697 PMCID: PMC7584371 DOI: 10.1021/acs.inorgchem.0c00957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ispinesib is a potent inhibitor of kinesin spindle protein (KSP), which has been identified as a promising target for antimitotic anticancer drugs. Herein, we report the synthesis of half-sandwich complexes of Ru, Os, Rh, and Ir bearing the ispinesib-derived N,N-bidentate ligands (R)- and (S)-2-(1-amino-2-methylpropyl)-3-benzyl-7-chloroquinazolin-4(3H)-one and studies on their chemical and biological properties. Using the enantiomerically pure (R)- and (S)-forms of the ligand, depending on the organometallic moiety, either the SM,R or RM,S diastereomers, respectively, were observed in the molecular structures of the Ru- and Os(cym) (cym = η6-p-cymene) compounds, whereas the RM,R or SM,S diastereomers were found for the Rh- and Ir(Cp*) (Cp* = η5-pentamethylcyclopentadienyl) derivatives. However, density functional theory (DFT) calculations suggest that the energy difference between the diastereomers is very small, and therefore a mixture of both will be present in solution. The organometallics exhibited varying antiproliferative activity in a series of human cancer cell lines, with the complexes featuring the (R)-enantiomer of the ligand being more potent than the (S)-configured counterparts. Notably, the Rh and Ir complexes demonstrated high KSP inhibitory activity, even at 1 nM concentration, which was independent of the chirality of the ligand, whereas the Ru and especially the Os derivatives were much less active.
Collapse
Affiliation(s)
- Michał Łomzik
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Poland
| | - Muhammad Hanif
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Aleksandra Budniok
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Anna Makal
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Daniel M Tchoń
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Barbara Leśniewska
- Faculty of Chemistry, University of Białystok, ul. K. Ciołkowskiego 1 K, 15-245 Białystok, Poland
| | - Kelvin K H Tong
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
14
|
Gracheva IA, Shchegravina ES, Schmalz HG, Beletskaya IP, Fedorov AY. Colchicine Alkaloids and Synthetic Analogues: Current Progress and Perspectives. J Med Chem 2020; 63:10618-10651. [PMID: 32432867 DOI: 10.1021/acs.jmedchem.0c00222] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colchicine, the main alkaloid of Colchicum autumnale, is one of the most famous natural molecules. Although colchicine belongs to the oldest drugs (in use since 1500 BC), its pharmacological potential as a lead structure is not yet fully exploited. This review is devoted to the synthesis and structure-activity relationships (SAR) of colchicine alkaloids and their analogues with modified A, B, and C rings, as well as hybrid compounds derived from colchicinoids including prodrugs, conjugates, and delivery systems. The systematization of a vast amount of information presented to date will create a paradigm for future studies of colchicinoids for neoplastic and various other diseases.
Collapse
Affiliation(s)
- Iuliia A Gracheva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S Shchegravina
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | | | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Alexey Yu Fedorov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
15
|
Malik MS, Ahmed SA, Althagafi II, Ansari MA, Kamal A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med Chem 2020; 11:327-348. [PMID: 33479639 PMCID: PMC7580775 DOI: 10.1039/c9md00458k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The triazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules in the quest for new drugs for clinical usage. Several marketed drugs possess these versatile moieties that are used in a wide range of medical indications. This stems from the unique intrinsic properties of triazoles, which impart stability to the basic pharmacophoric unit with an added advantage of being a bioisostere of different chemical functionalities. In the last decade, the use of triazoles as bioisosteres and linkers in the development of microtubule targeting agents has been extensively investigated. The present review highlights the advances in this promising area of drug discovery and development.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
- Chemistry Department , Faculty of Science , Assiut University , 71516 Assiut , Egypt
| | - Ismail I Althagafi
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Mohammed Azam Ansari
- Department of Epidemic Disease Research , Institute of Research and Medical Consultation , Imam AbdurRahman Bin Faisal University , 34212 Dammam , Saudi Arabia
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , New Delhi-110062 , India . ; ; Tel: +91 11 26059665
| |
Collapse
|
16
|
Ghawanmeh AA, Al-Bajalan HM, Mackeen MM, Alali FQ, Chong KF. Recent developments on (−)-colchicine derivatives: Synthesis and structure-activity relationship. Eur J Med Chem 2020; 185:111788. [DOI: 10.1016/j.ejmech.2019.111788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/18/2022]
|
17
|
El-Kardocy A, Mustafa M, Ahmed ER, Mohamady S, Mostafa YA. Aryl azide-sulfonamide hybrids induce cellular apoptosis: synthesis and preliminary screening of their cytotoxicity in human HCT116 and A549 cancer cell lines. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02438-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Shchegravina ES, Tretiakova DS, Alekseeva AS, Galimzyanov TR, Utkin YN, Ermakov YA, Svirshchevskaya EV, Negrebetsky VV, Karpechenko NY, Chernikov VP, Onishchenko NR, Vodovozova EL, Fedorov AY, Boldyrev IA. Phospholipidic Colchicinoids as Promising Prodrugs Incorporated into Enzyme-Responsive Liposomes: Chemical, Biophysical, and Enzymological Aspects. Bioconjug Chem 2019; 30:1098-1113. [PMID: 30817133 DOI: 10.1021/acs.bioconjchem.9b00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzyme-responsive liposomes release their cargo in response to pathologically increased levels of enzymes at the target site. We report herein an assembly of phospholipase A2-responsive liposomes based on colchicinoid lipid prodrugs incorporated into lipid bilayer of the nanosized vesicles. The liposomes were constructed to addresses two important issues: (i) the lipid prodrugs were designed to fit the structure of the enzyme binding site; and (ii) the concept of lateral pressure profile was used to design lipid prodrugs that introduce almost no distortions into the lipid bilayer packing, thus ensuring that corresponding liposomes are stable. The colchicinoid agents exhibit antiproliferative activity in subnanomolar range of concentrations.
Collapse
Affiliation(s)
- Ekaterina S Shchegravina
- Lobachevsky State University of Niznhy Novgorod , 23 Gagarin Prospest , Nizhny Novgorod , 603950 Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Timur R Galimzyanov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt , Moscow , 119071 Russian Federation.,National University of Science and Technology MISiS , 4 Leninskiy Prospekt , Moscow , 119049 Russian Federation
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Yuri A Ermakov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt , Moscow , 119071 Russian Federation
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Vadim V Negrebetsky
- Pirogov Russian National Research Medical University , 1 Ostrovityanov Street , Moscow , 117997 Russian Federation
| | - Natalia Yu Karpechenko
- N. N. Blokhin National Medical Research Center of Oncology , 24 Kashirskoye Shosse , Moscow , 115478 Russian Federation
| | - Valery P Chernikov
- Scientific Research Institute of Human Morphology , 3 Tsurupa Street , Moscow , 117418 Russian Federation
| | - Natalia R Onishchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Alexey Yu Fedorov
- Lobachevsky State University of Niznhy Novgorod , 23 Gagarin Prospest , Nizhny Novgorod , 603950 Russian Federation
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| |
Collapse
|
19
|
Heravi MM, Ghalavand N, Ghanbarian M, Mohammadkhani L. Applications of Mitsunobu Reaction in total synthesis of natural products. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Nastaran Ghalavand
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Manizheh Ghanbarian
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Leyla Mohammadkhani
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| |
Collapse
|
20
|
Kowalski K. Recent developments in the chemistry of ferrocenyl secondary natural product conjugates. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Kowalczyk K, Błauż A, Ciszewski WM, Wieczorek A, Rychlik B, Plażuk D. Correction: Colchicine metallocenyl bioconjugates showing high antiproliferative activities against cancer cell lines. Dalton Trans 2018; 47:2822. [PMID: 29431824 DOI: 10.1039/c8dt90016g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for 'Colchicine metallocenyl bioconjugates showing high antiproliferative activities against cancer cell lines' by Karolina Kowalczyk et al., Dalton Trans., 2017, 46, 17041-17052.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | | | | | | | | | | |
Collapse
|
22
|
Fan YL, Ke X, Liu M. Coumarin-triazole Hybrids and Their Biological Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3112] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Xing Ke
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Min Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze river Delta Region; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| |
Collapse
|
23
|
Structure-Activity Relationship Studies of β-Lactam-azide Analogues as Orally Active Antitumor Agents Targeting the Tubulin Colchicine Site. Sci Rep 2017; 7:12788. [PMID: 28986548 PMCID: PMC5630639 DOI: 10.1038/s41598-017-12912-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022] Open
Abstract
We have synthesized a series of new β-lactam-azide derivatives as orally active anti-tumor agents by targeting tubulin colchicine binding site and examined their structure activity relationship (SAR). Among them, compound 28 exhibited the most potent antiproliferative activity against MGC-803 cells with an IC50 value of 0.106 μM by induction of G2/M arrest and apoptosis and inhibition of the epithelial to mesenchymal transition. 28 acted as a novel inhibitor of tubulin polymerization by its binding to the colchicine site. SAR analysis revealed that a hydrogen atom at the C-3 position of the β-lactam was required for the potent antiproliferative activity of β-lactam-azide derivatives. Oral administration of compound 28 also effectively inhibited MGC-803 xenograft tumor growth in vivo in nude mice without causing significant loss of body weight. These results suggested that compound 28 is a promising orally active anticancer agent with potential for development of further clinical applications.
Collapse
|
24
|
Synthesis and cytostatic properties of polyfunctionalized furanoallocolchicinoids. Eur J Med Chem 2016; 126:432-443. [PMID: 27912174 DOI: 10.1016/j.ejmech.2016.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022]
Abstract
A series of furan-based allocolchicinoids was prepared from commercially available colchicine via a nine-step reaction sequence. Cytostatic activity, cell cycle arrest, apoptosis, tubulin and F-actin expression were studied in vitro in 2D and 3D cultures of normal and tumor epithelial keratinocytes, endothelial and mesenchymal cells. Among the prepared furanoallocolchicine analogues, 14a and 7a displayed the most pronounced anti-cancer activity. These compounds induced two types of effects: (a) cell cycle arrest in the G2/M phase as a direct consequence of effective tubulin binding (metaphase effect), and (b) pronounced cell stress (as evidenced by the overexpression of tubulin and F-actin), which was caused by the hyperpolarization of mitochondrial and lysosomal membranes (interphase effect).
Collapse
|
25
|
Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and Isoprenoids Modification by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition (Click Chemistry): Toward New Functions and Molecular Architectures. Chem Rev 2016; 116:5689-743. [DOI: 10.1021/acs.chemrev.5b00302] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karol Kacprzak
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Iwona Skiera
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Monika Piasecka
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Zdzisław Paryzek
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
26
|
Domagalska J, Pyta K, Przybylski P. Conversion of leucomycin-A3 antibiotic into novel triazole analogues via regio- and diastereoselective SN1′ substitution with allylic rearrangement and 1,3-dipolar cycloaddition of CuAAC type. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Sitnikov NS, Sintsov AV, Shchegravina ES, Prokop A, Schmalz HG, Fokin VV, Fedorov AY. Synthesis and antitumor activity of 7-(triazol-1-yl)pyrroloallocolchicine derivatives. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1018-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Thomopoulou P, Sachs J, Teusch N, Mariappan A, Gopalakrishnan J, Schmalz HG. New Colchicine-Derived Triazoles and Their Influence on Cytotoxicity and Microtubule Morphology. ACS Med Chem Lett 2016; 7:188-91. [PMID: 26985296 DOI: 10.1021/acsmedchemlett.5b00418] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022] Open
Abstract
A series of new colchicinoids with a variable triazole unit at C-7 was synthesized through Cu(I)-catalyzed 1,3-dipolar cycloaddition (click-chemistry) of a colchicine-derived azide with various alkynes and the cytotoxicity against THP-1 and Jurkat cancer cell lines was used for structural optimization. Three particularly active compounds (IC50 ≤ 5 nM) were additionally investigated with respect to their efficacy against relevant solid tumor cell lines (HeLa, A549, and SK MES 1). Besides distorting the microtubule morphology by tubulin depolymerization, one compound also exhibited a pronounced centrosome declustering effect in triple negative breast cancer cells (MDA-MB-231) and nonsmall cell lung cancer cells (H1975).
Collapse
Affiliation(s)
| | - Julia Sachs
- Technische
Hochschule Koeln, Kaiser-Wilhelm-Allee, Building E39, 51373 Leverkusen, Germany
| | - Nicole Teusch
- Technische
Hochschule Koeln, Kaiser-Wilhelm-Allee, Building E39, 51373 Leverkusen, Germany
| | - Aruljothi Mariappan
- Center
for Molecular Medicine and Institute of Biochemistry II of the University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Center
for Molecular Medicine and Institute of Biochemistry II of the University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Hans-Günther Schmalz
- Department
of Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany
| |
Collapse
|
29
|
Pore VS, Divse JM, Charolkar CR, Nawale LU, Khedkar VM, Sarkar D. Design and synthesis of 11α-substituted bile acid derivatives as potential anti-tuberculosis agents. Bioorg Med Chem Lett 2015; 25:4185-90. [PMID: 26299346 DOI: 10.1016/j.bmcl.2015.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
We have synthesized a series of novel 11α-triazoyl bile acid derivatives. In addition, we also have synthesized N-alkyl and N-acyl derivatives of C-11 amino bile acid esters. All the compounds were evaluated for the inhibitory activity against Mycobacterium tuberculosis H37Ra (MTB) at 30 μg/mL level. Four lead compounds (2b, 3, 7 and 8) were further confirmed from their dose dependent effect against MTB. These compounds were found to be active against Dormant and active stage MTB under both in vitro as well as within THP1 host macrophages. The most promising compound 2b showed strong antitubercular activities against MTB under in vitro and ex vivo (IC90 value of ∼3 μg/mL) conditions and almost insignificant cytotoxicity up to 100 μg/mL against THP-1, A549 and PANC-1 human cancer cell lines. Inactivity of all these compounds against Gram positive and Gram negative bacteria indicates their specificity. Molecular docking studies of these compounds into the active site of DprE1 enzyme revealed a similar binding mode to native ligands in the crystal structure thereby helping to establish a structural basis of inhibition of MTB. The synthesized compounds were analyzed for ADME properties and showed potential to develop good oral drug candidates. Our results clearly indicate the identification of some novel, selective and specific inhibitors against MTB that can be explored further for potential antitubercular drug.
Collapse
Affiliation(s)
- Vandana S Pore
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Jaisingh M Divse
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | | | - Laxman U Nawale
- Combichem-Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Vijay M Khedkar
- Combichem-Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Dhiman Sarkar
- Combichem-Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
30
|
Yadav DB, Taleli L, van der Westhuyzen AE, Fernandes MA, Dragoun M, Prokop A, Schmalz HG, de Koning CB, van Otterlo WAL. Synthesis of Diverse 6-Oxa-allocolchicinoids by a Suzuki-Miyaura Coupling, Acid-Catalyzed Intramolecular Transacetalization Strategy. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Sitnikov NS, Sinzov AV, Allegro D, Barbier P, Combes S, Onambele LA, Prokop A, Schmalz HG, Fedorov AY. Synthesis of indole-derived allocolchicine congeners exhibiting pronounced anti-proliferative and apoptosis-inducing properties. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00320b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and biological assessment of indole-based allocolchicine congeners with potent anti-proliferative and apoptosis-inducing activity are reported.
Collapse
Affiliation(s)
- Nikolay S. Sitnikov
- Department of Organic Chemistry
- Lobachevsky State University of Nizhni Novgorod
- Nizhni Novgorod 603950
- Russia
- Department für Chemie
| | - Alexander V. Sinzov
- Department of Organic Chemistry
- Lobachevsky State University of Nizhni Novgorod
- Nizhni Novgorod 603950
- Russia
| | | | | | - Sebastien Combes
- Laboratory of Integrative Structural and Chemical Biology, Institut Paoli-Calmettes
- Aix-Marseille Université
- Marseille
- France
| | | | - Aram Prokop
- Department of Pediatric Hematology/Oncology
- 50735 Köln
- Germany
| | | | - Alexey Yu. Fedorov
- Department of Organic Chemistry
- Lobachevsky State University of Nizhni Novgorod
- Nizhni Novgorod 603950
- Russia
| |
Collapse
|
32
|
Voitovich YV, Shegravina ES, Sitnikov NS, Faerman VI, Fokin VV, Schmalz HG, Combes S, Allegro D, Barbier P, Beletskaya IP, Svirshchevskaya EV, Fedorov AY. Synthesis and Biological Evaluation of Furanoallocolchicinoids. J Med Chem 2014; 58:692-704. [DOI: 10.1021/jm501678w] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuliya V. Voitovich
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S. Shegravina
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Nikolay S. Sitnikov
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Vladimir I. Faerman
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Valery V. Fokin
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Hans-Gunther Schmalz
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Koln, Germany
| | - Sebastien Combes
- CRCM,
CNRS UMR7258, Laboratory of Integrative Structural and Chemical Biology
(ISCB), INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Universit́e, UM105,
F-13009, Marseille, France
| | - Diane Allegro
- Centre de Recherche en Oncologie Biologique et en Oncopharmacologie,
CRO2 INSERM UMR 911, Faculte de Pharmacie, Universite d’Aix-Marseille, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Pascal Barbier
- Centre de Recherche en Oncologie Biologique et en Oncopharmacologie,
CRO2 INSERM UMR 911, Faculte de Pharmacie, Universite d’Aix-Marseille, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Irina P. Beletskaya
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Vorobyevy Gory, 119992 Moscow, Russian Federation
| | - Elena V. Svirshchevskaya
- Laboratory
of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, GSP-7, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russian Federation
| | - Alexey Yu. Fedorov
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
33
|
Pyta K, Klich K, Domagalska J, Przybylski P. Structure and evaluation of antibacterial and antitubercular properties of new basic and heterocyclic 3-formylrifamycin SV derivatives obtained via 'click chemistry' approach. Eur J Med Chem 2014; 84:651-76. [PMID: 25063947 DOI: 10.1016/j.ejmech.2014.07.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 12/11/2022]
Abstract
Thirty four novel derivatives of 3-formylrifamycin SV were synthesized via reductive alkylation and copper(I)-catalysed azide-alkyne cycloaddition. According to the obtained results, 'click chemistry' can be successfully applied for modification of structurally complex antibiotics such as rifamycins, with the formation of desired 1,2,3-triazole products. However, when azide-alkyne cycloaddition on 3-formylrifamycin SV derivatives demanded higher amount of catalyst, lower temperature and longer reaction time because of the high volatility of substrates, an unexpected intramolecular condensation with the formation of 3,4-dihydrobenzo[g]quinazoline heterocyclic system took place. Structures of new derivatives in solution were determined using one- and two-dimensional NMR methods and FT-IR spectroscopy. Computational DFT and PM6 methods were employed to correlate their conformation and acid-base properties to biological activity and establish SAR of the novel compounds. Microbiological, physico-chemical (logP, solubility) and structural studies of newly synthesised rifamycins indicated that for the presence of relatively high antibacterial (MIC ~0.01 nmol/mL) and antitubercular (MIC ~0.006 nmol/mL) activities, a rigid and basic substituent at C(3) arm, containing a protonated nitrogen atom "open" toward intermolecular interactions, is required.
Collapse
Affiliation(s)
- Krystian Pyta
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| | - Katarzyna Klich
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| | - Joanna Domagalska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| |
Collapse
|
34
|
Kuznetsova NR, Svirshchevskaya EV, Sitnikov NS, Abodo L, Sutorius H, Zapke J, Velder J, Thomopoulou P, Oschkinat H, Prokop A, Schmalz HG, Fedorov AY, Vodovozova EL. Lipophilic prodrugs of a triazole-containing colchicine analogue in liposomes: Biological effects on human tumor cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1068162013050105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Usanov DL, Naodovic M, Brasholz M, Yamamoto H. Gold(I)-Catalyzed Cyclodehydration Enabled by the Triisopropylsilyl Group: A Synthetically Versatile Methodology. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201200176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Sitnikov N, Velder J, Abodo L, Cuvelier N, Neudörfl J, Prokop A, Krause G, Fedorov AY, Schmalz HG. Total Synthesis of Indole-Derived Allocolchicine Analogues Exhibiting Strong Apoptosis-Inducing Activity. Chemistry 2012; 18:12096-102. [DOI: 10.1002/chem.201200083] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/21/2012] [Indexed: 11/05/2022]
|
37
|
Termath AO, Ritter S, König M, Kranz DP, Neudörfl JM, Prokop A, Schmalz HG. Synthesis of Oxa-B-Ring Analogs of Colchicine through Rh-Catalyzed Intramolecular [5+2] Cycloaddition. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200677] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Malysheva YB, Combes S, Allegro D, Peyrot V, Knochel P, Gavryushin AE, Fedorov AY. Synthesis and biological evaluation of novel anticancer bivalent colchicine–tubulizine hybrids. Bioorg Med Chem 2012; 20:4271-8. [DOI: 10.1016/j.bmc.2012.05.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/15/2012] [Accepted: 05/25/2012] [Indexed: 11/30/2022]
|
39
|
Koszytkowska-Stawińska M, Mironiuk-Puchalska E, Rowicki T. Synthesis of 1,2,3-triazolo-nucleosides via the post-triazole N-alkylation. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Usanov DL, Yamamoto H. Formation of Five- and Seven-Membered Rings Enabled by the Triisopropylsilyl Auxiliary Group. Org Lett 2011; 14:414-7. [DOI: 10.1021/ol203209b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dmitry L. Usanov
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Hisashi Yamamoto
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
41
|
Schmalz HG, Nicolaus N, Reball J, Sitnikov N, Yu. Fedorov A, Velder J, Termath A. A Convenient Entry to New C-7-Modified Colchicinoids through Azide Alkyne [3+2] Cycloaddition: Application of Ring-Contractive Rearrangements. HETEROCYCLES 2010. [DOI: 10.3987/com-10-s(e)117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|