1
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Avila-Sorrosa A, Bando-Vázquez AY, Alvarez-Alvarez V, Suarez-Contreras E, Nieto-Meneses R, Nogueda-Torres B, Vargas-Díaz ME, Díaz-Cedillo F, Reyes-Martínez R, Hernandez-Ortega S, Morales-Morales D. Synthesis, characterization and preliminary in vitro trypanocidal activity of N-arylfluorinated hydroxylated-Schiff bases. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
A novel pregnene analogs: synthesis, cytotoxicity on prostate cancer of PC-3 and LNCPa-AI cells and in silico molecular docking study. Mol Divers 2020; 25:661-671. [PMID: 32006297 DOI: 10.1007/s11030-020-10038-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/18/2020] [Indexed: 10/25/2022]
Abstract
New pregnene analogs of N-hydroxamic acid 6, imino-propane hydrazides 7 and 8 as well as the aryl amides 9-11, oxadiazole, pyrazole and sulfinyl analogs 13-15, via the hydrazide analog 5 of methyl ((5-pregnen-3β,17β-diol-15α-yl)thio)propanoate (4) were synthesized. The in vitro cytotoxic activities of selected synthesized steroids against two human prostate cancer cell lines (PC-3, and LNCaP-AI) were evaluated by MTT assay. Compound 10 was the most active cytotoxic agent among these steroids against PC-3 and LNCaP-AI cell lines with inhibition of 96.2%, and 93.6% at concentration levels of 10.0 μM and 91.8%, and of 79.8% at concentration of 1.0 μM, respectively. Molecular docking study of 10 showed a hydrogen bonding with the amino acid Asn705 residue of the receptor 1E3G, together with hydrophobic interactions. Therefore, compound 10 can be considered as a promising anticancer agent due to its potent cytotoxic activity.
Collapse
|
4
|
Lepesheva G, Christov P, Sulikowski GA, Kim K. A convergent, scalable and stereoselective synthesis of azole CYP51 inhibitors. Tetrahedron Lett 2017; 58:4248-4250. [PMID: 29371747 DOI: 10.1016/j.tetlet.2017.09.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study and development of azole-based CYP51 inhibitors is an active area of research across disciplines of biochemistry, pharmacology and infectious disease. Support of in vitro and in vivo studies require the development of robust asymmetric routes to single enantiomer products of this class of compounds. Herein, we describe a scalable and enantioselective synthesis to VNI and VFV, the two potent inhibitors of protozoan sterol 14α-demethylase (CYP51) that are currently under consideration for clinical trials for Chagas disease. A key transformation is the Jacobsen Hydrolytic Kinetic Resolution (HKR) reaction. The utility of the synthetic route is illustrated by the preparation of >25 g quantities of single enantiomers of VNI and VFV.
Collapse
Affiliation(s)
- Galina Lepesheva
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, USA
| | - Plamen Christov
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, USA
| | - Gary A Sulikowski
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, USA
| | - Kwangho Kim
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, USA
| |
Collapse
|
5
|
Emmerich J, van Koppen CJ, Burkhart JL, Hu Q, Siebenbürger L, Boerger C, Scheuer C, Laschke MW, Menger MD, Hartmann RW. Lead Optimization Generates CYP11B1 Inhibitors of Pyridylmethyl Isoxazole Type with Improved Pharmacological Profile for the Treatment of Cushing’s Disease. J Med Chem 2017; 60:5086-5098. [DOI: 10.1021/acs.jmedchem.7b00437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Juliette Emmerich
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | | | | | - Qingzhong Hu
- Department
of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | | | - Carsten Boerger
- PharmBioTec GmbH, Science Park 1, 66123 Saarbrücken, Germany
| | - Claudia Scheuer
- Institute
for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Matthias W. Laschke
- Institute
for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Michael D. Menger
- Institute
for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Ma L, Yin L, Hu Q. Therapeutic compounds for Cushing's syndrome: a patent review (2012-2016). Expert Opin Ther Pat 2016; 26:1307-1323. [PMID: 27454103 DOI: 10.1080/13543776.2016.1217331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Endogenous Cushing's syndrome (CS) is a set of disorders caused by chronic exposure to excess glucocorticoids induced by neuroendocrine tumors in pituitary, adrenals, and infrequently other sites (ectopic ACTH syndrome). Due to various comorbidities, CS patients exhibit higher risks of cardiovascular diseases and thus increased mortality. Pharmaceutical therapy is an important constituent of treatment regimen. Areas covered: Patents published since 2012 are reviewed, which claim therapeutic compounds interfering with ACTH secretion and down-stream signal transduction, inhibiting cortisol biosynthesis and antagonizing glucocorticoid receptors. Advances focus on a) new analogues with improved efficacy and PK properties or less off-target toxicity; b) existing drugs (candidates) being repurposed to treat CS; and c) novel strategies such as selective inhibition of CYP11B1. Expert opinion: New compounds against established targets need to be developed because current drugs lack selectivity leading to off-target toxicity. Selective inhibition of CYP11B1 is a novel alternative strategy and is potentially versatile in controlling all types of hypercortisolism. Selective multi-targeting enzymes in steroidogenesis network is promising due to potential synergistic effects. However, doses toward each targets are not feasible to adjust because the corresponding intrinsic potencies are rigid. Targeting PRKACA mutations is promising in treating CS caused by adrenal adenomas.
Collapse
Affiliation(s)
- Li Ma
- a College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China PR
| | | | - Qingzhong Hu
- c Department of Chemistry , University of Cambridge , Cambridge , UK
| |
Collapse
|
7
|
Gobbi S, Hu Q, Zimmer C, Engel M, Belluti F, Rampa A, Hartmann RW, Bisi A. Exploiting the Chromone Scaffold for the Development of Inhibitors of Corticosteroid Biosynthesis. J Med Chem 2016; 59:2468-77. [DOI: 10.1021/acs.jmedchem.5b01609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Silvia Gobbi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Christina Zimmer
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Matthias Engel
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Federica Belluti
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Angela Rampa
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Alessandra Bisi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| |
Collapse
|
8
|
Synthesis and CYP17α hydroxylase inhibition activity of new 3α- and 3β-ester derivatives of pregnenolone and related ether analogues. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1480-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Al-Masoudi NA, Kadhim RA, Abdul-Rida NA, Saeed BA, Engel M. New biaryl-chalcone derivatives of pregnenolone via Suzuki-Miyaura cross-coupling reaction. Synthesis, CYP17 hydroxylase inhibition activity, QSAR, and molecular docking study. Steroids 2015; 101:43-50. [PMID: 26051784 DOI: 10.1016/j.steroids.2015.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
A new class of steroids is being synthesized for its ability to prevent intratumoral androgen production by inhibiting the activity of CYP17 hydroxylase enzyme. The scheme involved the synthesis of chalcone derivative of pregnenolone 5 which was further modified to the corresponding biaryl-chalcone pregnenolone analogs 16-25 using Suzuki-Miyaura cross-coupling reaction. The synthesized compounds were tested for activity using human CYP17α hydroxylase expressed in Escherichia coli. Compounds 21 was the most active inhibitor in this series, with IC50 values of 0.61μM and selectivity profile of 88.7% inhibition of hydroxylase enzyme. Molecular docking study of 21 was performed and showed the hydrogen bonds and hydrophobic interaction with the amino acid residues of the active site of CYP17.
Collapse
Affiliation(s)
- Najim A Al-Masoudi
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq.
| | - Rawaa A Kadhim
- Department of Chemistry, College of Education, University of Qadisiya, Qadisiya, Iraq
| | - Nabeel A Abdul-Rida
- Department of Chemistry, College of Science, University of Qadisiya, Qadisiya, Iraq
| | - Bahjat A Saeed
- Department of Chemistry, College of Education, University of Basrah, Basrah, Iraq
| | - Matthias Engel
- Institut für Pharmazeutische und Medizinische Chemie, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
10
|
Al-Masoudi NA, Mahdi KM, Abdul-Rida NA, Saeed BA, Engel M. A new pregnenolone analogues as privileged scaffolds in inhibition of CYP17 hydroxylase enzyme. Synthesis and in silico molecular docking study. Steroids 2015; 100:52-9. [PMID: 25988615 DOI: 10.1016/j.steroids.2015.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/20/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
A new series of 17-(N-(arylimino)-5-pregnen-3β-ol derivatives 19-32 as well as carboxylate and acrylate analogues of pregnenolone 37-40 were synthesized and evaluated for their inhibitory activity against human CYP17 hydroxylase expressed in Escherichia coli. Compounds 32 and 37 were the most potent analogues in this series, showing inhibition activity with IC50 = 2.11 and 1.29 μM, respectively. However, the analogue 37 revealed a better selectivity profile (83.21% inhibition of hydroxylase), which is a leading candidate for further development. Molecular docking study of 37 showed binding with the amino acid residues of CYP17 through hydrogen bonds and hydrophobic interaction.
Collapse
Affiliation(s)
- Najim A Al-Masoudi
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq; Am Tannenhof 8, 78464 Konstanz, Germany.
| | - Kuthiar M Mahdi
- Department of Chemistry, College of Education, University of Qadisiya, Qadisiya, Iraq
| | - Nabeel A Abdul-Rida
- Department of Chemistry, College of Education, University of Qadisiya, Qadisiya, Iraq
| | - Bahjat A Saeed
- Department of Chemistry, College of Education, University of Basrah, Basrah, Iraq
| | - Mathias Engel
- Institut für Pharmazeutische und Medizinische Chemie, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
11
|
Hu Q, Kunde J, Hanke N, Hartmann RW. Identification of 4-(4-nitro-2-phenethoxyphenyl)pyridine as a promising new lead for discovering inhibitors of both human and rat 11β-Hydroxylase. Eur J Med Chem 2015; 96:139-50. [PMID: 25874338 DOI: 10.1016/j.ejmech.2015.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 11/26/2022]
Abstract
The inhibition of 11β-hydroxylase is a promising strategy for the treatment of Cushing's syndrome, in particular for the recurrent and subclinical cases. To achieve proof of concept in rats, efforts were paid to identify novel lead compounds inhibiting both human and rat CYP11B1. Modifications on a potent promiscuous inhibitor of hCYP11B1, hCYP11B2 and hCYP19 (compound IV) that exhibited moderate rCYP11B1 inhibition led to compound 8 as a new promising lead compound. Significant improvements compared to starting point IV were achieved regarding inhibitory potency against both human and rat CYP11B1 (IC50 values of 2 and 163 nM, respectively) as well as selectivity over hCYP19 (IC50 = 1900 nM). Accordingly, compound 8 was around 7- and 28-fold more potent than metyrapone regarding the inhibition of human and rat CYP11B1 and exhibited a comparable selectivity over hCYP11B2 (SF of 3.5 vs 4.9). With further optimizations on this new lead compound 8, drug candidates with satisfying profiles are expected to be discovered.
Collapse
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Jessica Kunde
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Nina Hanke
- Elexopharm GmbH, Campus A1, 66123 Saarbrücken, Germany
| | - Rolf W Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany.
| |
Collapse
|
12
|
Synthesis, structural characterization and biological activity of fluorinated Schiff-bases of the type [C6H4-1-(OH)-3-(CHNArF)]. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.12.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Hu Q, Yin L, Ali A, Cooke AJ, Bennett J, Ratcliffe P, Lo MMC, Metzger E, Hoyt S, Hartmann RW. Novel pyridyl substituted 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines as potent and selective aldosterone synthase inhibitors with improved in vitro metabolic stability. J Med Chem 2015; 58:2530-7. [PMID: 25711516 DOI: 10.1021/acs.jmedchem.5b00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CYP11B2 inhibition is a promising treatment for diseases caused by excessive aldosterone. To improve the metabolic stability in human liver miscrosomes of previously reported CYP11B2 inhibitors, modifications were performed via a combination of ligand- and structure-based drug design approaches, leading to pyridyl 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolones. Compound 26 not only exhibited a much longer half-life (t1/2 ≫ 120 min), but also sustained inhibitory potency (IC50 = 4.2 nM) and selectivity over CYP11B1 (SF = 422), CYP17, CYP19, and a panel of hepatic CYP enzymes.
Collapse
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus C2-3, D-66123, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Grombein CM, Hu Q, Rau S, Zimmer C, Hartmann RW. Heteroatom insertion into 3,4-dihydro-1H-quinolin-2-ones leads to potent and selective inhibitors of human and rat aldosterone synthase. Eur J Med Chem 2015; 90:788-96. [DOI: 10.1016/j.ejmech.2014.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/17/2022]
|
15
|
Zhu W, Hu Q, Hanke N, van Koppen CJ, Hartmann RW. Potent 11β-Hydroxylase Inhibitors with Inverse Metabolic Stability in Human Plasma and Hepatic S9 Fractions To Promote Wound Healing. J Med Chem 2014; 57:7811-7. [DOI: 10.1021/jm501004t] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Weixing Zhu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Nina Hanke
- ElexoPharm GmbH, Im
Stadtwald, D-66123 Saarbrücken, Germany
| | | | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
16
|
Yin L, Hu Q, Emmerich J, Lo MMC, Metzger E, Ali A, Hartmann RW. Novel Pyridyl- or Isoquinolinyl-Substituted Indolines and Indoles as Potent and Selective Aldosterone Synthase Inhibitors. J Med Chem 2014; 57:5179-89. [DOI: 10.1021/jm500140c] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lina Yin
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus A1, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Juliette Emmerich
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Michael Man-Chu Lo
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Edward Metzger
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Amjad Ali
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Hu Q, Yin L, Hartmann RW. Aldosterone Synthase Inhibitors as Promising Treatments for Mineralocorticoid Dependent Cardiovascular and Renal Diseases. J Med Chem 2014; 57:5011-22. [DOI: 10.1021/jm401430e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Abstract
As the first in class steroid 17α-hydroxylase/C17,20-lyase (CYP17) inhibitor, abiraterone acetate (of which the active metabolite is abiraterone) has been shown to improve overall survival in patients with castration-resistant prostate cancer (CRPC)--in those who are chemotherapy-naive and those previously treated with docetaxel. Furthermore, the clinical success of abiraterone demonstrated that CRPC, which has previously been regarded as an androgen-independent disease, is still driven, at least in part, by androgens. More importantly, abiraterone is a 'promiscuous' drug that interacts with a number of targets, which dictate its clinical benefits and adverse effects profile. Besides CYP17 inhibition, abiraterone acts as an antagonist to the androgen receptor and inhibits 3β-hydroxysteroid dehydrogenase--two effects that potentially contribute to its antitumour effects. However, the inhibition of the 17α-hydroxylase activity of CYP17, CYP11B1 and a panel of hepatic CYP enzymes leads to adverse effects and toxicities that include secondary mineralocorticoid excess. Abiraterone is also associated with increased incidence of cardiac disorders. Under such circumstances, development of new CYP17 inhibitors as an additional line of defence is urgently needed. To achieve enhanced clinical benefits, new strategies are being explored that include selective inhibition of the C17,20-lyase activity of CYP17 and multi-targeting strategies that affect androgen synthesis and signalling at different points. Some of these strategies-including the drugs orteronel, VT-464 and galeterone--are supported by preclinical data and are being explored in the clinic.
Collapse
|
19
|
Unexpected results of a SNAr-reaction. A novel synthetic approach to 1-arylthio-2-naphthols. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Pinto-Bazurco Mendieta MAE, Hu Q, Engel M, Hartmann RW. Highly potent and selective nonsteroidal dual inhibitors of CYP17/CYP11B2 for the treatment of prostate cancer to reduce risks of cardiovascular diseases. J Med Chem 2013; 56:6101-7. [PMID: 23859149 DOI: 10.1021/jm400484p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dual CYP17/CYP11B2 inhibitors are proposed as a novel strategy for the treatment of prostate cancer to reduce risks of cardiovascular diseases. Via a combination of ligand- and structure-based approaches, a series of dual inhibitors were designed leading to the 2-(3-pyridyl)naphthalenes 10 and 11 with strong inhibition of both enzymes (IC50 values around 20 nM) and excellent selectivities over CYP11B1, CYP19, and CYP3A4. These compounds are considered as promising candidates for further in vivo evaluation.
Collapse
Affiliation(s)
- Mariano A E Pinto-Bazurco Mendieta
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
21
|
Recent progress in pharmaceutical therapies for castration-resistant prostate cancer. Int J Mol Sci 2013; 14:13958-78. [PMID: 23880851 PMCID: PMC3742227 DOI: 10.3390/ijms140713958] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/16/2022] Open
Abstract
Since 2010, six drugs have been approved for the treatment of castration-resistant prostate cancer, i.e., CYP17 inhibitor Abiraterone, androgen receptor antagonist Enzalutamide, cytotoxic agent Cabazitaxel, vaccine Sipuleucel-T, antibody Denosumab against receptor activator of nuclear factor kappa B ligand and radiopharmaceutical Alpharadin. All these drugs demonstrate improvement on overall survival, expect for Denosumab, which increases the bone mineral density of patients under androgen deprivation therapy and prolongs bone-metastasis-free survival. Besides further CYP17 inhibitors (Orteronel, Galeterone, VT-464 and CFG920), androgen receptor antagonists (ARN-509, ODM-201, AZD-3514 and EZN-4176) and vaccine Prostvac, more drug candidates with various mechanisms or new indications of launched drugs are currently under evaluation in different stages of clinical trials, including various kinase inhibitors and platinum complexes. Some novel strategies have also been proposed aimed at further potentiation of antitumor effects or reduction of side effects and complications related to treatments. Under these flourishing circumstances, more investigations should be performed on the optimal combination or the sequence of treatments needed to delay or reverse possible resistance and thus maximize the clinical benefits for the patients.
Collapse
|
22
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 482] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Krug SJ, Hu Q, Hartmann RW. Hits identified in library screening demonstrate selective CYP17A1 lyase inhibition. J Steroid Biochem Mol Biol 2013; 134:75-9. [PMID: 23142656 DOI: 10.1016/j.jsbmb.2012.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/25/2012] [Accepted: 10/28/2012] [Indexed: 11/24/2022]
Abstract
A screening of structurally different steroid hormone synthesis inhibitors was performed in order to find a starting point for the development of a new inhibitor of the bifunctional steroidogenic enzyme CYP17A1. Emphasis was placed on determination of selectivity between the two catalytic steps, namely 17α-hydroxylase and C(17,20)-lyase. For that purpose a new inhibition assay has been developed. Hits identified within this novel assay demonstrated selective inhibition of CYP17A1 lyase activity, and thus mark the basis for the development of selective C(17,20)-lyase inhibitors for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Sebastian J Krug
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | | | | |
Collapse
|
24
|
Gobbi S, Hu Q, Negri M, Zimmer C, Belluti F, Rampa A, Hartmann RW, Bisi A. Modulation of cytochromes P450 with xanthone-based molecules: from aromatase to aldosterone synthase and steroid 11β-hydroxylase inhibition. J Med Chem 2013; 56:1723-9. [PMID: 23363058 DOI: 10.1021/jm301844q] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imidazolylmethylflavones previously reported by us as aromatase inhibitors proved to be able to interact with aldosterone synthase (CYP11B2), a cytochrome P450 enzyme involved in the biosynthesis of the mineralcorticoid hormone aldosterone, and were used to obtain a pharmacophore model for this enzyme. Here, in the search for potential ligands for CYP11B2 and the related CYP11B1, a virtual screening of a small compounds library of our earlier synthesized aromatase inhibitors was performed and, according to the results and the corresponding biological data, led to the design and synthesis of a series of xanthones derivatives carrying an imidazolylmethyl substituent in position 1 and different substituents in position 4. Some very potent inhibitors were obtained; in particular, the 4-chlorine derivative was active in the low nanomolar or subnanomolar range on CYP11B2 and CYP11B1, respectively, proving that xanthone can be considered as an excellent scaffold, whose activity can be directed to different targets when appropriately functionalized.
Collapse
Affiliation(s)
- Silvia Gobbi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yin L, Hu Q, Hartmann RW. Tetrahydropyrroloquinolinone Type Dual Inhibitors of Aromatase/Aldosterone Synthase as a Novel Strategy for Breast Cancer Patients with Elevated Cardiovascular Risks. J Med Chem 2013; 56:460-70. [DOI: 10.1021/jm301408t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lina Yin
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus A1, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
26
|
Yin L, Hu Q, Hartmann RW. 3-Pyridyl substituted aliphatic cycles as CYP11B2 inhibitors: aromaticity abolishment of the core significantly increased selectivity over CYP1A2. PLoS One 2012; 7:e48048. [PMID: 23133610 PMCID: PMC3486838 DOI: 10.1371/journal.pone.0048048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/20/2012] [Indexed: 01/08/2023] Open
Abstract
Aldosterone synthase (CYP11B2) is a promising therapeutic target for the treatment of cardiovascular diseases related to abnormally high aldosterone levels. On the basis of our previously identified lead compounds I–III, a series of 3-pyridinyl substituted aliphatic cycles were designed, synthesized and tested as CYP11B2 inhibitors. Aromaticity abolishment of the core was successfully applied to overcome the undesired CYP1A2 inhibition. This study resulted in a series of potent and selective CYP11B2 inhibitors, with compound 12 (IC50 = 21 nM, SF = 50) as the most promising one, which shows no inhibition toward CYP1A2 at 2 µM. The design conception demonstrated in this study can be helpful in the optimization of CYP inhibitor drugs regarding CYP1A2 selectivity.
Collapse
Affiliation(s)
- Lina Yin
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- * E-mail: (QH); (RWH)
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- * E-mail: (QH); (RWH)
| |
Collapse
|
27
|
Hu Q, Yin L, Hartmann RW. Selective Dual Inhibitors of CYP19 and CYP11B2: Targeting Cardiovascular Diseases Hiding in the Shadow of Breast Cancer. J Med Chem 2012; 55:7080-9. [DOI: 10.1021/jm3004637] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
| | - Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
- ElexoPharm GmbH,
Campus A1,
D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
| |
Collapse
|
28
|
Yin L, Lucas S, Maurer F, Kazmaier U, Hu Q, Hartmann RW. Novel Imidazol-1-ylmethyl Substituted 1,2,5,6-Tetrahydropyrrolo[3,2,1-ij]quinolin-4-ones as Potent and Selective CYP11B1 Inhibitors for the Treatment of Cushing’s Syndrome. J Med Chem 2012; 55:6629-33. [DOI: 10.1021/jm3003872] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus
A1, D-66123 Saarbrücken, Germany
| | - Simon Lucas
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| | - Frauke Maurer
- Institute für Organische
Chemie, Universität des Saarlandes, Geb. C4-2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Institute für Organische
Chemie, Universität des Saarlandes, Geb. C4-2, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
29
|
Hargrove TY, Kim K, de Nazaré Correia Soeiro M, da Silva CF, Batista DDGJ, Batista MM, Yazlovitskaya EM, Waterman MR, Sulikowski GA, Lepesheva GI. CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:178-186. [PMID: 23504044 DOI: 10.1016/j.ijpddr.2012.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
CYP51 (sterol 14α-demethylase) is a cytochrome P450 enzyme essential for sterol biosynthesis and the primary target for clinical and agricultural antifungal azoles. The azoles that are currently in clinical use for systemic fungal infections represent modifications of two basic scaffolds, ketoconazole and fluconazole, all of them being selected based on their antiparasitic activity in cellular experiments. By studying direct inhibition of CYP51 activity across phylogeny including human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum, we identified three novel protozoa-specific inhibitory scaffolds, their inhibitory potency correlating well with antiprotozoan activity. VNI scaffold (carboxamide containing β-phenyl-imidazoles) is the most promising among them: killing T. cruzi amastigotes at low nanomolar concentration, it is also easy to synthesize and nontoxic. Oral administration of VNI (up to 400 mg/kg) neither leads to mortality nor reveals significant side effects up to 48 h post treatment using an experimental mouse model of acute toxicity. Trypanosomatidae CYP51 crystal structures determined in the ligand-free state and complexed with several azole inhibitors as well as a substrate analog revealed high rigidity of the CYP51 substrate binding cavity, which must be essential for the enzyme strict substrate specificity and functional conservation. Explaining profound potency of the VNI inhibitory scaffold, the structures also outline guidelines for its further development. First steps of the VNI scaffold optimization have been undertaken; the results presented here support the notion that CYP51 structure-based rational design of more efficient, pathogen-specific inhibitors represents a highly promising direction.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bottegoni G, Rocchia W, Cavalli A. Application of conformational clustering in protein-ligand docking. Methods Mol Biol 2012; 819:169-186. [PMID: 22183537 DOI: 10.1007/978-1-61779-465-0_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein-Ligand docking is a powerful technique routinely employed in structure-based drug design. Despite many reported success stories, docking is not always able to provide an accurate and easily interpretable prediction of the structure of the bound complex formed by a small organic molecule and a pharmacologically relevant target. Cluster analysis can represent a versatile and readily available postprocessing tool to be employed in combination with protein-ligand docking to simplify the evaluation of the results and help to overcome present limitations of docking protocols.
Collapse
Affiliation(s)
- Giovanni Bottegoni
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | |
Collapse
|
31
|
Al-Soud YA, Heydel M, Hartmann RW. Design and synthesis of 1,3,5-trisubstituted 1,2,4-triazoles as CYP enzyme inhibitors. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.09.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Hu Q, Jagusch C, Hille UE, Haupenthal J, Hartmann RW. Replacement of Imidazolyl by Pyridyl in Biphenylmethylenes Results in Selective CYP17 and Dual CYP17/CYP11B1 Inhibitors for the Treatment of Prostate Cancer. J Med Chem 2010; 53:5749-58. [DOI: 10.1021/jm100317b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | - Carsten Jagusch
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | - Ulrike E. Hille
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| |
Collapse
|
33
|
Hu Q, Yin L, Jagusch C, Hille UE, Hartmann RW. Isopropylidene Substitution Increases Activity and Selectivity of Biphenylmethylene 4-Pyridine Type CYP17 Inhibitors. J Med Chem 2010; 53:5049-53. [DOI: 10.1021/jm100400a] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Lina Yin
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus A1, D-66123 Saarbrücken, Germany
| | - Carsten Jagusch
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Ulrike E. Hille
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| |
Collapse
|