1
|
Grätz L, Müller C, Pegoli A, Schindler L, Bernhardt G, Littmann T. Insertion of Nanoluc into the Extracellular Loops as a Complementary Method To Establish BRET-Based Binding Assays for GPCRs. ACS Pharmacol Transl Sci 2022; 5:1142-1155. [PMID: 36407949 PMCID: PMC9667534 DOI: 10.1021/acsptsci.2c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/13/2022]
Abstract
Luminescence-based techniques play an increasingly important role in all areas of biochemical research, including investigations on G protein-coupled receptors (GPCRs). One quite recent and popular addition has been made by introducing bioluminescence resonance energy transfer (BRET)-based binding assays for GPCRs, which are based on the fusion of nanoluciferase (Nluc) to the N-terminus of the receptor and the occurring energy transfer via BRET to a bound fluorescent ligand. However, being based on BRET, the technique is strongly dependent on the distance/orientation between the luciferase and the fluorescent ligand. Here we describe an alternative strategy to establish BRET-based binding assays for GPCRs, where the N-terminal fusion of Nluc did not result in functioning test systems with our fluorescent ligands (e.g., for the neuropeptide Y Y1 receptor (Y1R) and the neurotensin receptor type 1 (NTS1R)). Instead, we introduced Nluc into their second extracellular loop and we obtained binding data for the fluorescent ligands and reported standard ligands (in saturation and competition binding experiments, respectively) comparable to data from the literature. The strategy was transferred to the angiotensin II receptor type 1 (AT1R) and the M1 muscarinic acetylcholine receptor (M1R), which led to affinity estimates comparable to data from radioligand binding experiments. Additionally, an analysis of the binding kinetics of all fluorescent ligands at their respective target was performed using the newly described receptor/Nluc-constructs.
Collapse
Affiliation(s)
| | - Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | - Lisa Schindler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | |
Collapse
|
2
|
Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y 1 Receptor. J Med Chem 2022; 65:4832-4853. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
Collapse
Affiliation(s)
- Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Sergei Kopanchuk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Michael Weinhart
- Institute of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes-Gutenberg-University Mainz, Düsbergweg 10-14, 55099 Mainz, Germany
| | - Martin U Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ago Rinken
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Spinnler K, von Krüchten L, Konieczny A, Schindler L, Bernhardt G, Keller M. An Alkyne-functionalized Arginine for Solid-Phase Synthesis Enabling "Bioorthogonal" Peptide Conjugation. ACS Med Chem Lett 2020; 11:334-339. [PMID: 32184966 DOI: 10.1021/acsmedchemlett.9b00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Lately, amino-functionalized N ω-carbamoylated arginines were introduced as arginine surrogates enabling peptide labeling. However, this approach is hardly compatible with peptides also containing lysine or cysteine. Here, we present the synthesis of an alkyne-functionalized, N ω-carbamoylated arginine building block (7), which is compatible with Fmoc-strategy solid-phase peptide synthesis. The alkynylated arginine was incorporated into three biologically active linear hexapeptides and into a cyclic pentapeptide. Peptide conjugation to an azido-functionalized fluorescent dye via "click" chemistry was successfully demonstrated. In the case of a peptide also containing lysine besides the alkyne-functionalized arginine, this was feasible in a "bioorthogonal" manner.
Collapse
Affiliation(s)
- Katrin Spinnler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Lara von Krüchten
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Lisa Schindler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Buschmann J, Seiler T, Bernhardt G, Keller M, Wifling D. Argininamide-type neuropeptide Y Y 1 receptor antagonists: the nature of N ω-carbamoyl substituents determines Y 1R binding mode and affinity. RSC Med Chem 2020; 11:274-282. [PMID: 33479634 PMCID: PMC7536821 DOI: 10.1039/c9md00538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2023] Open
Abstract
The recently resolved crystal structure of the neuropeptide Y Y1 receptor (Y1R), co-crystallized with the high-affinity (pK i: 10.11), argininamide-type Y1R antagonist UR-MK299 (2), revealed that the N ω-carbamoyl substituent (van der Waals volume: 139 Å3) is deeply buried in the receptor, occupying a hydrophobic pocket. We synthesized and characterized a series of argininamides, structurally related to 2. Y1R affinity decreased with increasing size of the carbamoyl residue (minimal pK i: 5.67). Exceeding a critical size of the substituent (van der Waals volume: 212 Å3), the ligands bound in an inverted mode with the carbamoyl side chain located at the surface of the receptor, as suggested by induced-fit docking and MD simulations.
Collapse
Affiliation(s)
- Jonas Buschmann
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Theresa Seiler
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Günther Bernhardt
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Max Keller
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - David Wifling
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| |
Collapse
|
5
|
Kuhn K, Littmann T, Dukorn S, Tanaka M, Keller M, Ozawa T, Bernhardt G, Buschauer A. In Search of NPY Y 4R Antagonists: Incorporation of Carbamoylated Arginine, Aza-Amino Acids, or d-Amino Acids into Oligopeptides Derived from the C-Termini of the Endogenous Agonists. ACS OMEGA 2017; 2:3616-3631. [PMID: 30023699 PMCID: PMC6044894 DOI: 10.1021/acsomega.7b00451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The cross-linked pentapeptides (2R,7R)-diaminooctanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) ((2R,7R)-BVD-74D, (2R,7R)-1) and octanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) (2) as well as the pentapeptide Ac-Tyr-Arg-Leu-Arg-Tyr-amide (3) were previously described as neuropeptide Y Y4 receptor (Y4R) partial agonists. Here, we report on a series of analogues of (2R,7R)-1 and 2 in which Arg2, Leu3, or Arg4 were replaced by the respective aza-amino acids. The replacement of Arg2 in 3 with a carbamoylated arginine building block and the extension of the N-terminus by an additional arginine led to the high-affinity hexapeptide Ac-Arg-Tyr-Nω-[(4-aminobutyl)aminocarbonyl]Arg-Leu-Arg-Tyr-amide (35), which was used as a precursor for a d-amino acid scan. The target compounds were investigated for Y4R functional activity in assays with complementary readouts: aequorin Ca2+ and β-arrestin 1 or β-arrestin 2 assays. In contrast to the parent compounds, which are Y4R agonists, several ligands were able to suppress the effect elicited by the endogenous ligand pancreatic polypeptide and therefore represent a novel class of peptide Y4R antagonists.
Collapse
Affiliation(s)
- Kilian
K. Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Miho Tanaka
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Takeaki Ozawa
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| |
Collapse
|
6
|
Dukorn S, Littmann T, Keller M, Kuhn K, Cabrele C, Baumeister P, Bernhardt G, Buschauer A. Fluorescence- and Radiolabeling of [Lys4,Nle17,30]hPP Yields Molecular Tools for the NPY Y4 Receptor. Bioconjug Chem 2017; 28:1291-1304. [DOI: 10.1021/acs.bioconjchem.7b00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Kilian Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Division
of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Billrothstraße 11, 5020 Salzburg, Austria
| | - Paul Baumeister
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Keller M, Maschauer S, Brennauer A, Tripal P, Koglin N, Dittrich R, Bernhardt G, Kuwert T, Wester HJ, Buschauer A, Prante O. Prototypic 18F-Labeled Argininamide-Type Neuropeptide Y Y 1R Antagonists as Tracers for PET Imaging of Mammary Carcinoma. ACS Med Chem Lett 2017; 8:304-309. [PMID: 28337321 DOI: 10.1021/acsmedchemlett.6b00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/24/2022] Open
Abstract
The neuropeptide Y (NPY) Y1 receptor (Y1R) selective radioligand (R)-Nα-(2,2-diphenylacetyl)-Nω-[4-(2-[18F]fluoropropanoylamino)butyl]aminocarbonyl-N-(4-hydroxybenzyl)argininamide ([18F]23), derived from the high-affinity Y1R antagonist BIBP3226, was developed for imaging studies of Y1R-positive tumors. Starting from the argininamide core bearing amine-functionalized spacer moieties, a series of fluoropropanoylated and fluorobenzoylated derivatives was synthesized and studied for Y1R affinity. The fluoropropanoylated derivative 23 displayed high affinity (Ki = 1.3 nM) and selectivity toward Y1R. Radiosynthesis was accomplished via 18F-fluoropropanoylation, yielding [18F]23 with excellent stability in mice; however, the biodistribution study revealed pronounced hepatobiliary clearance with high accumulation in the gall bladder (>100 %ID/g). Despite the unfavorable biodistribution, [18F]23 was successfully used for imaging of Y1R positive MCF-7 tumors in nude mice. Therefore, we suggest [18F]23 as a lead for the design of PET ligands with optimized physicochemical properties resulting in more favorable biodistribution and higher Y1R-dependent enrichment in mammary carcinoma.
Collapse
Affiliation(s)
- Max Keller
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Simone Maschauer
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Albert Brennauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Philipp Tripal
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Norman Koglin
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Ralf Dittrich
- Department
of Obstetrics and Gynecology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 21/23, D-91054 Erlangen, Germany
| | - Günther Bernhardt
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Torsten Kuwert
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Hans-Jürgen Wester
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Armin Buschauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Olaf Prante
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
8
|
Kuhn KK, Ertl T, Dukorn S, Keller M, Bernhardt G, Reiser O, Buschauer A. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J Med Chem 2016; 59:6045-58. [DOI: 10.1021/acs.jmedchem.6b00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kilian K. Kuhn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Stefanie Dukorn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Keller M, Kuhn KK, Einsiedel J, Hübner H, Biselli S, Mollereau C, Wifling D, Svobodová J, Bernhardt G, Cabrele C, Vanderheyden PML, Gmeiner P, Buschauer A. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. J Med Chem 2016; 59:1925-45. [PMID: 26824643 DOI: 10.1021/acs.jmedchem.5b01495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
Collapse
Affiliation(s)
- Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Kilian K Kuhn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale, CNRS/IPBS , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jaroslava Svobodová
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Patrick M L Vanderheyden
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
10
|
Keller M, Weiss S, Hutzler C, Kuhn KK, Mollereau C, Dukorn S, Schindler L, Bernhardt G, König B, Buschauer A. N(ω)-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y1 Receptor Antagonists and a Radiolabeled Selective High-Affinity Molecular Tool ([(3)H]UR-MK299) with Extended Residence Time. J Med Chem 2015; 58:8834-49. [PMID: 26466164 DOI: 10.1021/acs.jmedchem.5b00925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Analogues of the argininamide-type NPY Y1 receptor (Y1R) antagonist BIBP3226, bearing carbamoyl moieties at the guanidine group, revealed subnanomolar Ki values and caused depression of the maximal response to NPY (calcium assay) by up to 90% in a concentration- and time-dependent manner, suggesting insurmountable antagonism. To gain insight into the mechanism of binding of the synthesized compounds, a tritiated antagonist, (R)-N(α)-diphenylacetyl-N(ω)-[2-([2,3-(3)H]propionylamino)ethyl]aminocarbonyl-(4-hydroxybenzyl)arginin-amide ([(3)H]UR-MK299, [(3)H]38), was prepared. [(3)H]38 revealed a dissociation constant in the picomolar range (Kd 0.044 nM, SK-N-MC cells) and very high Y1R selectivity. Apart from superior affinity, a considerably lower target off-rate (t1/2 95 min) was characteristic of [(3)H]38 compared to that of the higher homologue containing a tetramethylene instead of an ethylene spacer (t1/2 3 min, Kd 2.0 nM). Y1R binding of [(3)H]38 was fully reversible and fully displaceable by nonpeptide antagonists and the agonist pNPY. Therefore, the insurmountable antagonism observed in the functional assay has to be attributed to the extended target-residence time, a phenomenon of relevance in drug research beyond the NPY receptor field.
Collapse
Affiliation(s)
| | | | | | | | - Catherine Mollereau
- CNRS/IPBS (Institut de Pharmacologie et Biologie Structurale) , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | | | | | | | | | | |
Collapse
|
11
|
Keller M, Schindler L, Bernhardt G, Buschauer A. Toward Labeled Argininamide-Type NPY Y1Receptor Antagonists: Identification of a Favorable Propionylation Site in BIBO3304. Arch Pharm (Weinheim) 2015; 348:390-8. [DOI: 10.1002/ardp.201400427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Lisa Schindler
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Günther Bernhardt
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Armin Buschauer
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| |
Collapse
|
12
|
Baumeister P, Erdmann D, Biselli S, Kagermeier N, Elz S, Bernhardt G, Buschauer A. [(3) H]UR-DE257: development of a tritium-labeled squaramide-type selective histamine H2 receptor antagonist. ChemMedChem 2014; 10:83-93. [PMID: 25320025 DOI: 10.1002/cmdc.201402344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 11/08/2022]
Abstract
A series of new piperidinomethylphenoxypropylamine-type histamine H2 receptor (H2 R) antagonists with different substituted "urea equivalents" was synthesized and characterized in functional in vitro assays. Based on these data as selection criteria, radiosynthesis of N-[6-(3,4-dioxo-2-{3-[3-(piperidin-1-ylmethyl)phenoxy]propylamino}cyclobut-1-enylamino)hexyl]-(2,3-(3) H2 )propionic amide ([(3) H]UR-DE257) was performed. The radioligand (specific activity: 63 Ci mmol(-1) ) had high affinity for human, rat, and guinea pig H2 R (hH2 R, Sf9 cells: Kd , saturation binding: 31 nM, kinetic studies: 20 nM). UR-DE257 revealed high H2 R selectivity on membranes of Sf9 cells, expressing the respective hHx R subtype (Ki values: hH1 R: >10000 nM, hH2 R: 28 nM, hH3 R: 3800 nM, hH4 R: >10000 nM). In spite of insurmountable antagonism, probably due to rebinding of [(3) H]UR-DE257 to the H2 R (extended residence time), the title compound proved to be a valuable pharmacological tool for the determination of H2 R affinities in competition binding assays.
Collapse
Affiliation(s)
- Paul Baumeister
- Institut für Pharmazie, Pharmazeutische/Medizinische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg (Germany)
| | | | | | | | | | | | | |
Collapse
|
13
|
Mountford SJ, Liu M, Zhang L, Groenen M, Herzog H, Holliday ND, Thompson PE. Synthetic routes to the Neuropeptide Y Y1 receptor antagonist 1229U91 and related analogues for SAR studies and cell-based imaging. Org Biomol Chem 2014; 12:3271-81. [PMID: 24733083 DOI: 10.1039/c4ob00176a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potent Y1 receptor antagonist, 1229U91 has an unusual cyclic dimer structure that makes syntheses of analogue series quite challenging. We have examined three new routes to the synthesis of such peptides that has given access to novel structural variants including heterodimeric compounds, ring size variants and labelled conjugates. These compounds, including a fluorescently labelled analogue VIII show potent antagonism that can be utilised in studying Y1 receptor pharmacology.
Collapse
Affiliation(s)
- Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Dimeric argininamide-type neuropeptide Y receptor antagonists: Chiral discrimination between Y1 and Y4 receptors. Bioorg Med Chem 2013; 21:6303-22. [DOI: 10.1016/j.bmc.2013.08.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022]
|