1
|
Kangra K, Kakkar S, Mittal V, Kumar V, Aggarwal N, Chopra H, Malik T, Garg V. Incredible use of plant-derived bioactives as anticancer agents. RSC Adv 2025; 15:1721-1746. [PMID: 39835210 PMCID: PMC11744461 DOI: 10.1039/d4ra05089d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols. Plant-derived substances exhibit their anticancer potential through antiproliferative activity, cytotoxicity, apoptosis, angiogenesis and cell cycle arrest. Natural compounds can affect the molecular activity of cells through various signaling pathways, like the cell cycle pathway, STAT-3 pathway, PI3K/Akt, and Ras/MAP-kinase pathways. Capsaicin, ouabain, and lycopene show their anticancer potential through the STAT-3 pathway in breast, colorectal, pancreatic, lung, cervical, ovarian and colon cancers. Epigallocatechin gallate and emodin target the JNK protein in skin, breast, and lung cancers, while berberine, evodiamine, lycorine, and astragalin exhibit anticancer activity against breast, liver, prostate, pancreatic and skin cancers and leukemia through the PI3K/Akt and Ras/MAP-kinase pathways. In vitro/in vivo investigations revealed that secondary metabolites suppress cancer cells by causing DNA damage and activating apoptosis-inducing enzymes. After a meticulous literature review, the anti-cancer potential, mode of action, and clinical trials of 144 bioactive compounds and their synthetic analogues are included in the present work, which could pave the way for using plant-derived bioactives as anticancer agents.
Collapse
Affiliation(s)
- Kiran Kangra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Virender Kumar
- College of Pharmacy, Pandit Bhagwat Dayal Sharma University of Health Sciences Rohtak 124001 India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana Ambala 133207 Haryana India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab-144411 India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| |
Collapse
|
2
|
Křoustková J, Kohelová E, Muthná D, Kuneš J, Havelek R, Vrabec R, Malaník M, Suchánková D, Chlebek J, Jenčo J, Kosturko Š, Cahlíková L. Undescribed Amaryllidaceae Alkaloids from Zephyranthes citrina and Their Cytotoxicity. JOURNAL OF NATURAL PRODUCTS 2024; 87:2317-2326. [PMID: 39229678 PMCID: PMC11443518 DOI: 10.1021/acs.jnatprod.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
This phytochemical study presents the isolation of eight alkaloids from Zephyranthes citrina Baker. The structures of the new alkaloids, zephycitrine (1) and 6-oxonarcissidine (2), were established by analysis of spectroscopic and spectrometric data. Processing the EtOH extract under acid-base conditions yielded the unreported isolation artifacts 3 and 4. This work also provides analytical data for alkaloids not properly described in the literature (5 and 6). The hippeastidine/zephyranine scaffolds in derivatives 3, 4, and 8-10 are also thoroughly discussed. Furthermore, a cytotoxicity screening of 25 Amaryllidaceae alkaloids isolated from Z. citrina was performed. Only the known alkaloids haemanthamine (12), haemanthidine (13), and lycorine (27) showed significant cell growth inhibition.
Collapse
Affiliation(s)
| | | | - Darina Muthná
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | | | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | | | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
3
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Shahcheraghi SH, Alimardani M, Lotfi M, Lotfi M, Uversky VN, Guetchueng ST, Palakurthi SS, Charbe NB, Hromić-Jahjefendić A, Aljabali AAA, Gadewar MM, Malik S, Goyal R, El-Tanani M, Mishra V, Mishra Y, Tambuwala MM. Advances in glioblastoma multiforme: Integrating therapy and pathology perspectives. Pathol Res Pract 2024; 257:155285. [PMID: 38653089 DOI: 10.1016/j.prp.2024.155285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors. Recent years have witnessed a surge in interest in natural products derived from plants, particularly alkaloids, for their potential anticancer effects. Alkaloids have shown promise in cancer chemotherapy by selectively targeting crucial signaling pathways implicated in tumor progression and survival. Specifically, they modulate the NF-κB and MAPK pathways, resulting in reduced tumor growth and altered gene expression across various cancer types. Additionally, alkaloids exhibit the capacity to induce cell cycle arrest, further impeding tumor proliferation in several malignancies. This review aims to delineate recent advances in understanding the pathology of glioblastoma multiforme (GBM) and to explore the potential therapeutic implications of alkaloids in managing this deadly disease. By segregating discussions on GBM pathology from those on alkaloid-based therapies, we provide a structured overview of the current challenges in GBM treatment and the promising opportunities presented by alkaloid-based interventions. Furthermore, we briefly discuss potential future directions in GBM research and therapy beyond alkaloids, including emerging treatment modalities or areas of investigation that hold promise for improving patient outcomes. In conclusion, our efforts offer hope for enhanced outcomes and improved quality of life for GBM patients through alkaloid-based therapies. By integrating insights from pathology and therapeutic perspectives, we underscore the significance of a comprehensive approach in addressing this devastating disease.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Stephanie Tamdem Guetchueng
- Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, PO Box 6163, Yaoundé, Cameroon
| | - Sushesh Shrivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School Of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Manoj M Gadewar
- Department of Pharmacology, School of medical and allied sciences, K.R. Mangalam University, Gurgaon, Haryana 122103, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Murtaza M Tambuwala
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
5
|
Ritomská A, Koutova D, Křoustková J, Královec K, Muthná D, Kuneš J, Nováková L, Havelek R, Cahlíková L. Design of semisynthetic derivatives of the Amaryllidaceae alkaloid ambelline and exploration of their in vitro cytotoxic activities. Saudi Pharm J 2023; 31:101684. [PMID: 37457365 PMCID: PMC10345363 DOI: 10.1016/j.jsps.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023] Open
Abstract
Ambelline, an alkaloid from the Amaryllidaceae family with a crinane-type skeleton, has not yet demonstrated any outstanding biological activity. However, its analogues prepared by derivatization of the C-11 hydroxyl group show different interesting effects. Continuing our earlier work, twelve novel aromatic esters were developed (10, 14, 16, 17, 22-25, 30-33) and studied, together with previously synthesized derivatives (2-9, 11-13, 15, 18-21, 26-29) in terms of their cytotoxic activity. The cytotoxic potential was determined on a panel of nine human cancer cell lines and one noncancerous cell line to characterize their biological activity spectrum. To describe and foresee the structure-activity relationship for further research, substances synthesized and described in our previous work were also included in this cytotoxicity study. The most significant activity was associated with analogues having methyl (10), methoxy (14-17), or ethoxy (18) substitution on the phenyl condensed to ambelline. However, the 4-chloro-3-nitrobenzoyl derivative (32) showed the most promising IC50 values, ranging from 0.6 ± 0.1 µM to 9.9 ± 0.2 µM. In vitro cytotoxicity studies indicated the most potent antiproliferative activity of 32 in a dose-dependent and time-dependent manner. Besides, 32 was found to be effective in decreasing viability and triggering apoptosis of MOLT-4 T-lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Aneta Ritomská
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Darja Koutova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Jana Křoustková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Karel Královec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
| | - Darina Muthná
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Lucie Cahlíková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
6
|
Masi M, Di Lecce R, Mérindol N, Girard MP, Berthoux L, Desgagné-Penix I, Calabrò V, Evidente A. Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum. Toxins (Basel) 2022; 14:toxins14040262. [PMID: 35448871 PMCID: PMC9029599 DOI: 10.3390/toxins14040262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 01/30/2023] Open
Abstract
Ten Amaryllidaceae alkaloids (AAs) were isolated for the first time from Pancratium maritimum collected in Calabria region, Italy. They belong to different subgroups of this family and were identified as lycorine, which is the main alkaloid, 9-O-demethyllycorine, haemanthidine, haemanthamine, 11-hydroxyvittatine, homolycorine, pancracine, obliquine, tazettine and vittatine. Haemanthidine was isolated as a scalar mixture of two 6-epimers, as already known also for other 6-hydroxycrinine alkaloids, but for the first time they were separated as 6,11-O,O′-di-p-bromobenzoyl esters. The evaluation of the cytotoxic and antiviral potentials of all isolated compounds was undertaken. Lycorine and haemanthidine showed cytotoxic activity on Hacat cells and A431 and AGS cancer cells while, pancracine exhibited selective cytotoxicity against A431 cells. We uncovered that in addition to lycorine and haemanthidine, haemanthamine and pancracine also possess antiretroviral abilities, inhibiting pseudotyped human immunodeficiency virus (HIV)−1 with EC50 of 25.3 µM and 18.5 µM respectively. Strikingly, all the AAs isolated from P. maritimum were able to impede dengue virus (DENV) replication (EC50 ranged from 0.34−73.59 µM) at low to non-cytotoxic concentrations (CC50 ranged from 6.25 µM to >100 µM). Haemanthamine (EC50 = 337 nM), pancracine (EC50 = 357 nM) and haemanthidine (EC50 = 476 nM) were the most potent anti-DENV inhibitors. Thus, this study uncovered new antiviral properties of P. maritimum isolated alkaloids, a significant finding that could lead to the development of new therapeutic strategies to fight viral infectious diseases.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.M.); (R.D.L.)
| | - Roberta Di Lecce
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.M.); (R.D.L.)
| | - Natacha Mérindol
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (N.M.); (M.-P.G.); (I.D.-P.)
| | - Marie-Pierre Girard
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (N.M.); (M.-P.G.); (I.D.-P.)
| | - Lionel Berthoux
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada;
| | - Isabel Desgagné-Penix
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (N.M.); (M.-P.G.); (I.D.-P.)
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Viola Calabrò
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy;
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.M.); (R.D.L.)
- Correspondence:
| |
Collapse
|
7
|
Hu N, White LV, Lan P, Banwell MG. The Chemical Synthesis of the Crinine and Haemanthamine Alkaloids: Biologically Active and Enantiomerically-Related Systems that Serve as Vehicles for Showcasing New Methodologies for Molecular Assembly. Molecules 2021; 26:molecules26030765. [PMID: 33540725 PMCID: PMC7867252 DOI: 10.3390/molecules26030765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
The title alkaloids, often referred to collectively as crinines, are a prominent group of structurally distinct natural products with additional members being reported on a regular basis. As such, and because of their often notable biological properties, they have attracted attention as synthetic targets since the mid-1950s. Such efforts continue unabated and more recent studies on these alkaloids have focused on using them as vehicles for showcasing the utility of new synthetic methods. This review provides a comprehensive survey of the nearly seventy-year history of these synthetic endeavors.
Collapse
|
8
|
Karakoyun Ç, Masi M, Cimmino A, Önür MA, Somer NU, Kornienko A, Evidente A. A Brief Up-to-Date Overview of Amaryllidaceae Alkaloids: Phytochemical Studies of Narcissus tazetta subsp. tazetta L., Collected in Turkey. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19872906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A brief up-to-date overview on the isolation, and chemical and biological characterization of new and known alkaloids from different Amaryllidaceae species, including Brunsvigia, Crinum, Cyrtanthus, Narcissus, and Nerine genera, was reported. Furthermore, the isolation and chemical characterization of alkaloids extracted from bulbs of Narcissus tazetta subsp. tazetta L. collected from Muğla, Turkey were described.
Collapse
Affiliation(s)
- Çiğdem Karakoyun
- Department of Pharmacognosy, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte San’Angelo, Italy
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte San’Angelo, Italy
| | - Mustafa Ali Önür
- Department of Pharmacognosy, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Nehir Unver Somer
- Department of Pharmacognosy, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Antonio Evidente
- Department of Pharmacognosy, Faculty of Pharmacy, Ege University, İzmir, Turkey
| |
Collapse
|
9
|
Tong Q, You H, Chen X, Wang K, Sun W, Pei Y, Zhao X, Yuan M, Zhu H, Luo Z, Zhang Y. ZYH005, a novel DNA intercalator, overcomes all-trans retinoic acid resistance in acute promyelocytic leukemia. Nucleic Acids Res 2019; 46:3284-3297. [PMID: 29554366 PMCID: PMC6283422 DOI: 10.1093/nar/gky202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022] Open
Abstract
Despite All-trans retinoic acid (ATRA) has transformed acute promyelocytic leukemia (APL) from the most fatal to the most curable hematological cancer, there remains a clinical challenge that many high-risk APL patients who fail to achieve a complete molecular remission or relapse and become resistant to ATRA. Herein, we report that 5-(4-methoxyphenethyl)-[1, 3] dioxolo [4, 5-j] phenanthridin-6(5H)-one (ZYH005) exhibits specific anticancer effects on APL and ATRA-resistant APL in vitro and vivo, while shows negligible cytotoxic effect on non-cancerous cell lines and peripheral blood mononuclear cells from healthy donors. Using single-molecule magnetic tweezers and molecule docking, we demonstrate that ZYH005 is a DNA intercalator. Further mechanistic studies show that ZYH005 triggers DNA damage, and caspase-dependent degradation of the PML-RARa fusion protein. As a result, APL and ATRA-resistant APL cells underwent apoptosis upon ZYH005 treatment and this apoptosis-inducing effect is even stronger than that of arsenic trioxide and anticancer agents including 5-fluorouracil, cisplatin and doxorubicin. Moreover, ZYH005 represses leukemia development in vivo and prolongs the survival of both APL and ATRA-resistant APL mice. To our knowledge, ZYH005 is the first synthetic phenanthridinone derivative, which functions as a DNA intercalator and can serve as a potential candidate drug for APL, particularly for ATRA-resistant APL.
Collapse
Affiliation(s)
- Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xintao Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kongchao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufeng Pei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaodan Zhao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Govindaraju K, Ingels A, Hasan MN, Sun D, Mathieu V, Masi M, Evidente A, Kornienko A. Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorg Med Chem Lett 2018; 28:589-593. [PMID: 29409754 PMCID: PMC5831727 DOI: 10.1016/j.bmcl.2018.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
In a search of small molecules active against apoptosis-resistant cancer cells, a skeletal rearrangement of alkaloid haemanthamine was utilized to generate a series of compounds possessing the alkaloid montanine ring system. The synthesized compounds were found to inhibit proliferation of cancer cells resistant to apoptosis at micromolar concentrations. Selected compounds were also active against patient-derived glioblastoma cells expressing stem-cell markers. This is the first report describing the preparation of synthetic analogues of the montanine-type alkaloids with antiproliferative activity. The compounds prepared in the current investigation appear to be a useful starting point for the development of agents to fight cancers with apoptosis resistance, and thus, associated with poor prognoses.
Collapse
Affiliation(s)
- Karthik Govindaraju
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, United States
| | - Aude Ingels
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Veronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, United States.
| |
Collapse
|
11
|
Pellegrino S, Meyer M, Zorbas C, Bouchta SA, Saraf K, Pelly SC, Yusupova G, Evidente A, Mathieu V, Kornienko A, Lafontaine DLJ, Yusupov M. The Amaryllidaceae Alkaloid Haemanthamine Binds the Eukaryotic Ribosome to Repress Cancer Cell Growth. Structure 2018; 26:416-425.e4. [PMID: 29429877 DOI: 10.1016/j.str.2018.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/01/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
Abstract
Alkaloids isolated from the Amaryllidaceae plants have potential as therapeutics for treating human diseases. Haemanthamine has been studied as a novel anticancer agent due to its ability to overcome cancer cell resistance to apoptosis. Biochemical experiments have suggested that hemanthamine targets the ribosome. However, a structural characterization of its mechanism has been missing. Here we present the 3.1 Å resolution X-ray structure of haemanthamine bound to the Saccharomyces cerevisiae 80S ribosome. This structure reveals that haemanthamine targets the A-site cleft on the large ribosomal subunit rearranging rRNA to halt the elongation phase of translation. Furthermore, we provide evidence that haemanthamine and other Amaryllidaceae alkaloids also inhibit specifically ribosome biogenesis, triggering nucleolar stress response and leading to p53 stabilization in cancer cells. Together with a computer-aided interpretation of existing structure-activity relationships of Amaryllidaceae alkaloids congeners, we provide a rationale for designing molecules with enhanced potencies and reduced toxicities.
Collapse
Affiliation(s)
- Simone Pellegrino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Mélanie Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Christiane Zorbas
- RNA Molecular Biology and Center for Microscopy and Molecular Imaging (CMMI), Fonds National de la Recherche (F.R.S./FNRS) and Université Libre de Bruxelles (ULB), BioPark Campus, 6041 Gosselies, Belgium
| | - Soumaya A Bouchta
- RNA Molecular Biology and Center for Microscopy and Molecular Imaging (CMMI), Fonds National de la Recherche (F.R.S./FNRS) and Université Libre de Bruxelles (ULB), BioPark Campus, 6041 Gosselies, Belgium
| | - Kritika Saraf
- RNA Molecular Biology and Center for Microscopy and Molecular Imaging (CMMI), Fonds National de la Recherche (F.R.S./FNRS) and Université Libre de Bruxelles (ULB), BioPark Campus, 6041 Gosselies, Belgium
| | - Stephen C Pelly
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Denis L J Lafontaine
- RNA Molecular Biology and Center for Microscopy and Molecular Imaging (CMMI), Fonds National de la Recherche (F.R.S./FNRS) and Université Libre de Bruxelles (ULB), BioPark Campus, 6041 Gosselies, Belgium.
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
12
|
Cimmino A, Masi M, Evidente M, Superchi S, Evidente A. Amaryllidaceae alkaloids: Absolute configuration and biological activity. Chirality 2017. [PMID: 28649696 DOI: 10.1002/chir.22719] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plants belonging to the Amaryllidaceae family are well known for their ornamental and medicinal use. Plant members of this group are distributed through both tropical and subtropical regions of the world and are dominant in Andean South America, the Mediterranean basin, and southern Africa. Amaryllidaceae plants have been demonstrated to be a good source of alkaloids with a large spectrum of biological activities, the latter being strictly related to the absolute stereochemistry of the alkaloid scaffold. Among them, great importance for practical applications in medicine has galanthamine, which has already spawned an Alzheimer's prescription drug as a potent and selective inhibitor of the enzyme acetylcholinesterase. Furthermore, lycorine as well as its related isocarbostyryl analogs narciclasine and pancratistatine have shown a strong anticancer activity in vitro against different solid tumors with malignant prognosis. This review addresses the assignment of the absolute configuration of several Amaryllidaceae alkaloids and its relationship with their biological activities.
Collapse
Affiliation(s)
- Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Stefano Superchi
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| |
Collapse
|
13
|
Maroyi A. A review of ethnoboatany, therapeutic value, phytochemistry and pharmacology of Crinum macowanii Baker: A highly traded bulbous plant in Southern Africa. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:595-608. [PMID: 27773801 DOI: 10.1016/j.jep.2016.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/07/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crinum macowanii is a deciduous bulbous plant which grows in east, central and southern Africa. Crinum macowanii has been used as herbal medicine by the indigenous people of east and southern Africa has for several centuries. The bulb, leaves and roots of C. macowanii are reported to possess diverse medicinal properties and used to treat or manage various human and animal diseases and ailments throughout its distributional range. Crinum macowanii is used traditionally as a remedy for boils, diarrhoea, fever, inflammation, respiratory system problems, skin rashes, tuberculosis, wounds and urinary tract problems. AIM OF THE REVIEW The present review aims to summarize comprehensively the research that has been done on the ethnomedicinal uses, botany, phytochemistry and pharmacology of C. macowanii in different locations throughout its geographical range in east, central and southern African region so as to highlight research gaps and provide a foundation for further investigations on the plant species. MATERIALS AND METHODS A review of the literature was undertaken and an in-depth analysis of previous research on ethnobotany, therapeutic value, phytochemistry and pharmacology of C. macowanii throughout its distributional range in east, central and southern Africa. Literature sources included papers published in international journals, reports from international, regional and national organizations, conference papers, books, theses, websites and other grey literature. Electronic search engines such as Google, Google scholar, publishing sites such as Elsevier, scienceDirect, BMC, PubMed and other scientific database sites such as ChemSpider, PubChem were used as well as searching the library collections of the National Herbarium and Botanic Gardens (SRGH), Harare, Zimbabwe and the University of Fort Hare, South Africa. RESULTS A total of 32 ethnomedicinal uses of C. macowanii are documented in literature, which can be grouped into seven major ethnomedicinal general purpose usages, namely "fever", "wounds, sores and skin rashes", "boils and inflammation", "respiratory system problems", "blood cleansing", "urinary tract problem" and "veterinary uses". The chemical composition of C. macowanii is dominated by various isoquinoline alkaloids, which have been isolated from the bulbs, flowering stalks, leaves and roots. Major biological activities demonstrated by C. macowanii include antifungal, antiviral and antiplasmodial activities, cardiovascular effects as well as effects on the central nervous system. The population of C. macowanii is declining in the wild as the bulbs are over-collected for sale in medicinal (muthi) markets in southern Africa. CONCLUSION A literature search revealed that C. macowanii has a lot of potential as a possible source of pharmaceutical products for the treatment of a wide range of human and animal diseases and ailments. Some of the alkaloids isolated from C. macowanii have demonstrated various biological activities when investigated in in vitro assays. However, some of the ethnomedicinal uses of C. macowanii still require pharmacological investigations. Therefore, further studies are required to improve our knowledge about the mechanisms of action, efficacy, toxicity and clinical relevance of the plant species as well as its bioactive compounds.
Collapse
Affiliation(s)
- Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
14
|
Habartová K, Cahlíková L, Řezáčová M, Havelek R. The Biological Activity of Alkaloids from the Amaryllidaceae: From Cholinesterases Inhibition to Anticancer Activity. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Modern research has shown that Amaryllidaceae alkaloids represent a rich reservoir of potential small chemical molecules exhibiting several medicinal properties through various mechanisms. Among the many Amaryllidaceae compounds, galanthamine has been given a great amount of attention due to the fact that it possesses potent acetylcholinesterase inhibitory activity. In spite of the amount of evidence indicating the potential usefulness of Amaryllidaceae alkaloids in therapy, research groups have focused their attention on the other alkaloids present in this plant family. New investigations have shed light on many aspects of the structure of Amaryllidaceae alkaloids and on their semisynthetic modification, function, and mechanisms underlying in vitro and in vivo activity. In addition, Amaryllidaceae alkaloids have frequently been identified as having promising cytotoxic properties against cancer cell lines. While follow-up studies have repeatedly shown that Amaryllidaceae alkaloids and their derivatives demonstrate antiproliferative, cytotoxic and apoptosis-inducing activity, the mechanisms remain unclear. This review addresses the most important Amaryllidaceae alkaloids with anticancer potential, particularly those that have been studied for the purpose of gaining a better understanding of the basis of the activity at the cellular and molecular level.
Collapse
Affiliation(s)
- Klára Habartová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Zborovská 2089, Hradec Králové 500 03, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Zborovská 2089, Hradec Králové 500 03, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Zborovská 2089, Hradec Králové 500 03, Czech Republic
| |
Collapse
|
15
|
Henry S, Kidner R, Reisenauer MR, Magedov IV, Kiss R, Mathieu V, Lefranc F, Dasari R, Evidente A, Yu X, Ma X, Pertsemlidis A, Cencic R, Pelletier J, Cavazos DA, Brenner AJ, Aksenov AV, Rogelj S, Kornienko A, Frolova LV. 5,10b-Ethanophenanthridine amaryllidaceae alkaloids inspire the discovery of novel bicyclic ring systems with activity against drug resistant cancer cells. Eur J Med Chem 2016; 120:313-28. [PMID: 27218860 PMCID: PMC4943583 DOI: 10.1016/j.ejmech.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Plants of the Amaryllidaceae family produce a large variety of alkaloids and non-basic secondary metabolites, many of which are investigated for their promising anticancer activities. Of these, crinine-type alkaloids based on the 5,10b-ethanophenanthridine ring system were recently shown to be effective at inhibiting proliferation of cancer cells resistant to various pro-apoptotic stimuli and representing tumors with dismal prognoses refractory to current chemotherapy, such as glioma, melanoma, non-small-cell lung, esophageal, head and neck cancers, among others. Using this discovery as a starting point and taking advantage of a concise biomimetic route to the crinine skeleton, a collection of crinine analogues were synthetically prepared and evaluated against cancer cells. The compounds exhibited single-digit micromolar activities and retained this activity in a variety of drug-resistant cancer cell cultures. This investigation resulted in the discovery of new bicyclic ring systems with significant potential in the development of effective clinical cancer drugs capable of overcoming cancer chemotherapy resistance.
Collapse
Affiliation(s)
- Sean Henry
- Departments of Chemistry and Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Ria Kidner
- Departments of Chemistry and Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Mary R Reisenauer
- Departments of Chemistry and Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Igor V Magedov
- Departments of Chemistry and Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, CP205/1, Boulevard du Triomphe, Brussels, Belgium
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, CP205/1, Boulevard du Triomphe, Brussels, Belgium
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, ULB, 808 route de Lennik, 1070 Brussels, Belgium
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Xiaojie Yu
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - David A Cavazos
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Andrew J Brenner
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Snezna Rogelj
- Departments of Chemistry and Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Liliya V Frolova
- Departments of Chemistry and Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA.
| |
Collapse
|
16
|
Panayides JL, Mathieu V, Banuls LMY, Apostolellis H, Dahan-Farkas N, Davids H, Harmse L, Rey MEC, Green IR, Pelly SC, Kiss R, Kornienko A, van Otterlo WAL. Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides. Bioorg Med Chem 2016; 24:2716-24. [PMID: 27157005 DOI: 10.1016/j.bmc.2016.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Seventeen silyl- and trityl-modified (5'-O- and 3',5'-di-O-) nucleosides were synthesized with the aim of investigating the in vitro antiproliferative activities of these nucleoside derivatives. A subset of the compounds was evaluated at a fixed concentration of 100μM against a small panel of tumor cell lines (HL-60, K-562, Jurkat, Caco-2 and HT-29). The entire set was also tested at varying concentrations against two human glioma lines (U373 and Hs683) to obtain GI50 values, with the best results being values of ∼25μM.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa; Pioneering Health Sciences, CSIR Biosciences, PO Box 395, Pretoria 0001, South Africa
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Laetitia Moreno Y Banuls
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Helen Apostolellis
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa
| | - Nurit Dahan-Farkas
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa
| | - Hajierah Davids
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa; Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa
| | - Leonie Harmse
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa
| | - M E Christine Rey
- School of Molecular and Cellular Biology, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa
| | - Ivan R Green
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa
| | - Stephen C Pelly
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Willem A L van Otterlo
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa.
| |
Collapse
|
17
|
Nair JJ, Van Staden J, Bastida J. Cytotoxic Alkaloid Constituents of the Amaryllidaceae. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63601-0.00003-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
18
|
Dasari R, Masi M, Lisy R, Ferdérin M, English LR, Cimmino A, Mathieu V, Brenner AJ, Kuhn JG, Whitten ST, Evidente A, Kiss R, Kornienko A. Fungal metabolite ophiobolin A as a promising anti-glioma agent: In vivo evaluation, structure-activity relationship and unique pyrrolylation of primary amines. Bioorg Med Chem Lett 2015; 25:4544-8. [PMID: 26341136 PMCID: PMC4592837 DOI: 10.1016/j.bmcl.2015.08.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 02/04/2023]
Abstract
Glioblastoma, the most common form of malignant primary brain tumor, is characterized by resistance to apoptosis, which is largely responsible for the low effectiveness of the classical chemotherapeutic approaches based on apoptosis induction in cancer cells. Previously, a fungal secondary metabolite ophiobolin A was found to have significant activity against apoptosis-resistant glioblastoma cells through the induction of a non-apoptotic cell death, thus, offering an innovative strategy to combat this type of cancer. The current work describes the results of a preliminary evaluation of ophiobolin A in an in vivo glioblastoma model and its chemical derivatization to establish first synthetically generated structure-activity relationship. The synthetic work has also led to the discovery of a unique reaction of ophiobolin A with primary amines suggesting the possibility of pyrrolylation of lysine residues on its intracellular target protein(s).
Collapse
Affiliation(s)
- Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Romana Lisy
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Marlène Ferdérin
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Lance R English
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew J Brenner
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - John G Kuhn
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Steven T Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
19
|
Dasari R, De Carvalho A, Medellin DC, Middleton KN, Hague F, Volmar MNM, Frolova LV, Rossato MF, De La Chapa JJ, Dybdal-Hargreaves NF, Pillai A, Kälin RE, Mathieu V, Rogelj S, Gonzales CB, Calixto JB, Evidente A, Gautier M, Munirathinam G, Glass R, Burth P, Pelly SC, van Otterlo WAL, Kiss R, Kornienko A. Wittig derivatization of sesquiterpenoid polygodial leads to cytostatic agents with activity against drug resistant cancer cells and capable of pyrrolylation of primary amines. Eur J Med Chem 2015; 103:226-37. [PMID: 26360047 DOI: 10.1016/j.ejmech.2015.08.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022]
Abstract
Many types of cancer, including glioma, melanoma, non-small cell lung cancer (NSCLC), among others, are resistant to proapoptotic stimuli and thus poorly responsive to current therapies based on the induction of apoptosis in cancer cells. The current investigation describes the synthesis and anticancer evaluation of unique C12-Wittig derivatives of polygodial, a sesquiterpenoid dialdehyde isolated from Persicaria hydropiper (L.) Delabre. These compounds were found to undergo an unprecedented pyrrole formation with primary amines in a chemical model system, a reaction that could be relevant in the biological environment and lead to the pyrrolation of lysine residues in the target proteins. The anticancer evaluation of these compounds revealed their promising activity against cancer cells displaying various forms of drug resistance, including resistance to proapoptotic agents. Mechanistic studies indicated that compared to the parent polygodial, which displays fixative general cytotoxic action against human cells, the C12-Wittig derivatives exerted their antiproliferative action mainly through cytostatic effects explaining their activity against apoptosis-resistant cancer cells. The possibility for an intriguing covalent modification of proteins through a novel pyrrole formation reaction, as well as useful activities against drug resistant cancer cells, make the described polygodial-derived chemical scaffold an interesting new chemotype warranting thorough investigation.
Collapse
Affiliation(s)
- Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Annelise De Carvalho
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Derek C Medellin
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Kelsey N Middleton
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire, Faculté des Sciences, Université de Picardie Jules Verne, Amiens, France
| | - Marie N M Volmar
- Neurosurgical Research, University Clinics Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Liliya V Frolova
- Department of Chemistry, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA; Department of Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA
| | - Mateus F Rossato
- Center of Innovation and Preclinical Studies, Luiz Boiteux Piazza 1302, Cachoeira do Bom Jesus, Brazil; Department of Pharmacology, UFSC, Florianópolis SC 88.056-000, Brazil
| | - Jorge J De La Chapa
- Department of Comprehensive Dentistry, Cancer Therapy and Research Center, UTHSCSA, San Antonio, TX 78229, USA
| | | | - Akshita Pillai
- Department of Biomedical Sciences, University of Illinois, College of Medicine, 1601 Parkview Ave, Rockford, IL 61107, USA
| | - Roland E Kälin
- Neurosurgical Research, University Clinics Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Snezna Rogelj
- Department of Chemistry, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA; Department of Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA
| | - Cara B Gonzales
- Department of Comprehensive Dentistry, Cancer Therapy and Research Center, UTHSCSA, San Antonio, TX 78229, USA
| | - João B Calixto
- Center of Innovation and Preclinical Studies, Luiz Boiteux Piazza 1302, Cachoeira do Bom Jesus, Brazil; Department of Pharmacology, UFSC, Florianópolis SC 88.056-000, Brazil
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire, Faculté des Sciences, Université de Picardie Jules Verne, Amiens, France
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, College of Medicine, 1601 Parkview Ave, Rockford, IL 61107, USA
| | - Rainer Glass
- Neurosurgical Research, University Clinics Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Patricia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n° Campus do Valonguinho, Centro-Niterói, RJ 24020-140, Brazil
| | - Stephen C Pelly
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
20
|
Masi M, Frolova LV, Yu X, Mathieu V, Cimmino A, De Carvalho A, Kiss R, Rogelj S, Pertsemlidis A, Kornienko A, Evidente A. Jonquailine, a new pretazettine-type alkaloid isolated from Narcissus jonquilla quail, with activity against drug-resistant cancer. Fitoterapia 2015; 102:41-8. [PMID: 25598189 PMCID: PMC4942186 DOI: 10.1016/j.fitote.2015.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 01/22/2023]
Abstract
A new alkaloid, belonging to the pretazettine group of Amaryllidaceae alkaloids, was isolated from dried bulbs of Narcissus jonquilla quail and named jonquailine. Its structure, including the absolute configuration, was elucidated using various NMR, ECD and ESI MS techniques. Initial biological evaluation revealed significant antiproliferative effects against glioblastoma, melanoma, uterine sarcoma and non-small-cell lung cancer cells displaying various forms of drug resistance, including resistance to apoptosis and multi-drug resistance. Jonquailine was also found to synergize with paclitaxel in its antiproliferative action against drug-resistant lung cancer cells. The results obtained compared with literature data also showed that the hydroxylation at C-8 is an important feature for the anticancer activity but this seems unaffected by the stereochemistry or the acetalization of the lactol.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Liliya V Frolova
- Department of Chemistry, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA; Department of Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA
| | - Xiaojie Yu
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Annelise De Carvalho
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Snezna Rogelj
- Department of Chemistry, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA; Department of Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy.
| |
Collapse
|
21
|
Aksenov AV, Smirnov AN, Magedov IV, Reisenauer MR, Aksenov NA, Aksenova IV, Pendleton AL, Nguyen G, Johnston RK, Rubin M, De Carvalho A, Kiss R, Mathieu V, Lefranc F, Correa J, Cavazos DA, Brenner AJ, Bryan BA, Rogelj S, Kornienko A, Frolova LV. Activity of 2-aryl-2-(3-indolyl)acetohydroxamates against drug-resistant cancer cells. J Med Chem 2015; 58:2206-20. [PMID: 25671501 DOI: 10.1021/jm501518y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many types of tumor, including glioma, melanoma, non-small cell lung, esophageal, and head and neck cancer, among others, are intrinsically resistant to apoptosis induction and poorly responsive to current therapies with proapoptotic agents. In addition, tumors often develop multidrug resistance based on the cellular efflux of chemotherapeutic agents. Thus, novel anticancer agents capable of overcoming these intrinsic or developed tumor resistance mechanisms are urgently needed. We describe a series of 2-aryl-2-(3-indolyl)acetohydroxamic acids that are active against apoptosis- and multidrug-resistant cancer cells as well as glioblastoma neurosphere stemlike cell cultures derived from patients. Thus, the described compounds serve as a novel chemical scaffold for the development of potentially highly effective clinical cancer drugs.
Collapse
Affiliation(s)
- Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University , 1a Pushkin St., Stavropol 355009, Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nair JJ, Rárová L, Strnad M, Bastida J, van Staden J. Mechanistic Insights to the Cytotoxicity of Amaryllidaceae Alkaloids. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
With over 500 individual compounds, the Amaryllidaceae alkaloids represent a large and structurally diverse group of phytochemicals. Coupled to this structural diversity is the significant array of biological properties manifested by many of its members, of which their relevance in motor neuron disease and cancer chemotherapy has attracted considerable attention. To this extent, galanthamine has evolved into a successful commercial drug for Alzheimer's disease since its approval by the FDA in 2001. Concurrently, there have been several positive indicators for the emergence of an anticancer drug from the Amaryllidaceae due to the potency of several of its representatives as cell line specific antiproliferative agents. In this regard, the phenanthridones such as pancratistatin and narciclasine have offered most promise since their advancement into clinical trials, following which there has been renewed interest in the cytotoxic properties of these alkaloids. Given this background, this review seeks to highlight the various mechanisms which have been invoked to corroborate the cytotoxic effects of Amaryllidaceae alkaloids.
Collapse
Affiliation(s)
- Jerald J. Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Lucie Rárová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 78371 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Palacký University α Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic
| | - Jaume Bastida
- Departament de Productes Naturals, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| |
Collapse
|
23
|
Dasari R, Kornienko A. Multicomponent Synthesis of the Medicinally Important Pyrrolo[2,3-d]Pyrimidine Scaffold (Minireview). Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1456-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Nair JJ, Rárová L, Strnad M, Bastida J, Cheesman L, van Staden J. Crinane Alkaloids of the Amaryllidaceae with Cytotoxic Effects in Human Cervical Adenocarcinoma (HeLa) Cells. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The family Amaryllidaceae has a long history of usage in the traditional medicinal practices of the indigenous peoples of South Africa, with three of its species known to be used for cancer treatment. Furthermore, the Amaryllidaceae is widely recognized for its unique alkaloid constituents, several of which exhibit potent and selective cytotoxic activities. In this study, several crinane alkaloids derived from local Amaryllidaceae species were examined for cytotoxic effects against the human cervical adenocarcinoma cell line, of which distichamine was the most potent (IC50 2.2 μM).
Collapse
Affiliation(s)
- Jerald J. Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private BagX01, Scottsville 3209, South Africa
| | - Lucie Rárová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 78371 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Palacký University a Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic
| | - Jaume Bastida
- Departament de Productes Naturals, Facultat de Farmàcia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Lee Cheesman
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private BagX01, Scottsville 3209, South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private BagX01, Scottsville 3209, South Africa
| |
Collapse
|
25
|
Nair JJ, Bastida J, Codina C, Viladomat F, van Staden J. Alkaloids of the South African Amaryllidaceae: A Review. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The plant family Amaryllidaceae is known for its horticultural and ornamental appeal as well as its medicinal value. In relation to these characteristics, trade in Amaryllid flower varieties (especially daffodils) is a multi-million dollar revenue generator for the floriculture industry. Of greater significance are the medicinal attributes of the family, which has already spawned the Alzheimer's prescription drug galanthamine, a potent and selective inhibitor of the enzyme acetylcholinesterase, of significance in the progression of neurodegeneration associated with motor neuron diseases, with annual global sales of around $150 million. Furthermore, it is anticipated that an anticancer drug target related to the Amaryllidaceae alkaloid pancratistatin, presently under advanced clinical evaluation, will enter commercial circulation within the next decade. Members of the Amaryllidaceae are distributed through both tropical and subtropical regions of the globe, but are of prominence within three distinct geographical locations, including Andean South America, the Mediterranean basin, and southern Africa. The southern African zone is known to harbor at least a third of the worldwide complement of around 1000 species, many of which are widely utilized in the traditional medicinal practices of the indigenous people of the region. Given its therapeutic and economic value, its natural abundance in the southern African region, coupled to its widespread usage in ethnic medicine, the family Amaryllidaceae provides a diverse and accessible platform for phytochemical based drug discovery. A consolidation of its traditional usage as well as its chemical and pharmacological profiles will thus guide efforts aimed at maximizing this potential. In undertaking this survey of the Amaryllidaceae of southern African, we aimed to achieve these goals.
Collapse
Affiliation(s)
- Jerald J. Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Jaume Bastida
- Departament de Productes Naturals, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Carles Codina
- Departament de Productes Naturals, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Francesc Viladomat
- Departament de Productes Naturals, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| |
Collapse
|
26
|
Abstract
Covering: July 2010 to June 2012. Previous review: Nat. Prod. Rep., 2011, 28, 1126-1142. Recent progress on the isolation, identification, biological activity and synthetic studies of structurally diverse alkaloids from plants of the family Amaryllidaceae is summarized in this review. In addition, the structurally related alkaloids isolated from Sceletium species are discussed as well.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use. Int J Mol Sci 2013; 14:11713-41. [PMID: 23727937 PMCID: PMC3709753 DOI: 10.3390/ijms140611713] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/26/2013] [Accepted: 05/27/2013] [Indexed: 12/28/2022] Open
Abstract
The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer's disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches.
Collapse
|
28
|
Nair JJ, Bastida J, Viladomat F, van Staden J. Cytotoxic Agents of the Crinane Series of Amaryllidaceae Alkaloids. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the alkaloid galanthamine, the plant family Amaryllidaceae has endowed the pharmaceutical community with a potent and selective inhibitor of the enzyme acetylcholinestersae (AChE), of prominence in the chemotherapeutic approach towards motor neuron diseases. Following on the commercial success of this prescription drug in the treatment of Alzheimer's disease, it is anticipated that other drug candidates will in future emerge from the family. In this regard, the phenanthridones, exemplified by narciclasine and pancratistatin, of the lycorine series of Amaryllidaceae alkaloids have shown much promise as remarkably potent and selective anticancer agents, with a drug target of the series destined for the clinical market within the next decade. Given these interesting biological properties and their natural abundance, plants of the Amaryllidaceae have provided a diverse and accessible platform for phytochemical-based drug discovery. The crinane series of Amaryllidaceae alkaloids are also enriched with a significant array of biological properties. As a consequence of their close structural similarity to the anticancer agents of the lycorine series, the cytotoxic potential of crinane alkaloids has been realized through structure-activity relationship (SAR) studies involving targets of both semi-synthetic and natural origin, which has identified several members as leads with promising antiproliferative profiles. As the first of its kind, this review seeks to collate such information from the past few decades in advancing the crinane group as a viable platform for anticancer drug discovery.
Collapse
Affiliation(s)
- Jerald J. Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Jaume Bastida
- Departament de Productes Naturals, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Francesc Viladomat
- Departament de Productes Naturals, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| |
Collapse
|
29
|
Magedov IV, Lefranc F, Frolova LV, Banuls LMY, Peretti AS, Rogelj S, Mathieu V, Kiss R, Kornienko A. Antiproliferative activity of 2,3-disubstituted indoles toward apoptosis-resistant cancers cells. Bioorg Med Chem Lett 2013; 23:3277-82. [PMID: 23622980 DOI: 10.1016/j.bmcl.2013.03.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/18/2022]
Abstract
Many types of cancer, including glioma, melanoma, NSCLC, among others, are resistant to apoptosis induction and poorly responsive to current therapies with propaptotic agents. We describe a series of 2,3-disubstituted indoles, which display cytostatic rather than cytotoxic effects in cancer cells, and serve as a new chemical scaffold to develop anticancer agents capable of combating apoptosis-resistant cancers associated with dismal prognoses.
Collapse
Affiliation(s)
- Igor V Magedov
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nair JJ, Bastida J, Viladomat F, van Staden J. Cytotoxic Agents of the Crinane Series of Amaryllidaceae Alkaloids. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200701234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the alkaloid galanthamine, the plant family Amaryllidaceae has endowed the pharmaceutical community with a potent and selective inhibitor of the enzyme acetylcholinestersae (AChE), of prominence in the chemotherapeutic approach towards motor neuron diseases. Following on the commercial success of this prescription drug in the treatment of Alzheimer's disease, it is anticipated that other drug candidates will in future emerge from the family. In this regard, the phenanthridones, exemplified by narciclasine and pancratistatin, of the lycorine series of Amaryllidaceae alkaloids have shown much promise as remarkably potent and selective anticancer agents, with a drug target of the series destined for the clinical market within the next decade. Given these interesting biological properties and their natural abundance, plants of the Amaryllidaceae have provided a diverse and accessible platform for phytochemical-based drug discovery. The crinane series of Amaryllidaceae alkaloids are also enriched with a significant array of biological properties. As a consequence of their close structural similarity to the anticancer agents of the lycorine series, the cytotoxic potential of crinane alkaloids has been realized through structure-activity relationship (SAR) studies involving targets of both semi-synthetic and natural origin, which has identified several members as leads with promising antiproliferative profiles. As the first of its kind, this review seeks to collate such information from the past few decades in advancing the crinane group as a viable platform for anticancer drug discovery.
Collapse
Affiliation(s)
- Jerald J. Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Jaume Bastida
- Departament de Productes Naturals, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Francesc Viladomat
- Departament de Productes Naturals, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| |
Collapse
|
31
|
Liao N, Ao M, Zhang P, Yu L. Extracts of Lycoris aurea induce apoptosis in murine sarcoma S180 cells. Molecules 2012; 17:3723-35. [PMID: 22450682 PMCID: PMC6268187 DOI: 10.3390/molecules17043723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 12/30/2022] Open
Abstract
Lycoris species have been known since long ago as a multi-utility ethnomedicinal herbal in China. It has been reported to exhibit a number of properties such as anticancer, neuroprotective, and antibacterial activities. In the present study, the anticancer efficacy of dichloromethane extracts of Lycoris aurea (DELA), was evaluated both in vivo and in vitro using murine sarcoma 180 cells. To evaluate the effects of DELA on apoptotic cell death, flow cytometry and Western blotting were performed. DELA demonstrated promising inhibition effects on sarcoma 180 cells in vitro and a 53.49% inhibitory rate on cancer cells in vivo. DELA treatment increased thymus indices and spleen indices in vivo, indicating that it reduced tumours, but did not damage the main immune organs. The DELA-evoked increase in apoptotic cell death was accompanied by occurrence of cleaved caspase-3 and decreases in the ratio of Bcl-2/Bax. Further purification and LCMS analysis showed DELA contained homolycorine, 2α-hydroxyoduline, oduline, hippeastrine, 2α-hydroxy-6-O- methyloduline, and 2α-methoxy-6-O-methyloduline. These results indicate that DELA exerted its anticancer effects, at least in part, by inducing cancer cell apoptosis and thus can be considered as a potential candidate agent for treatment of cancer.
Collapse
Affiliation(s)
- Na Liao
- Authors to whom correspondence should be addressed; (N.L.); (L.Y.); Tel.: +8-627-8779-2264 (L.Y.); Fax: +8-627-8779-2265 (L.Y.)
| | | | | | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; (M.A.); (P.Z.)
| |
Collapse
|