1
|
Tang WF, Chang YH, Lin CC, Jheng JR, Hsieh CF, Chin YF, Chang TY, Lee JC, Liang PH, Lin CY, Lin GH, Cai JY, Chen YL, Chen YS, Tsai SK, Liu PC, Yang CM, Shadbahr T, Tang J, Hsu YL, Huang CH, Wang LY, Chen CC, Kau JH, Hung YJ, Lee HY, Wang WC, Tsai HP, Horng JT. BPR3P0128, a non-nucleoside RNA-dependent RNA polymerase inhibitor, inhibits SARS-CoV-2 variants of concern and exerts synergistic antiviral activity in combination with remdesivir. Antimicrob Agents Chemother 2024; 68:e0095623. [PMID: 38446062 PMCID: PMC10989008 DOI: 10.1128/aac.00956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Wen-Fang Tang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Fan Chin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Ching Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Guan-Hua Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jie-Yun Cai
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Li Chen
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Shan-Ko Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chuen-Mi Yang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Tolou Shadbahr
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Division of Medical Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Hsin-Yi Lee
- Institute of Biotechnology and Pharmaceutical Research, Value-Added MedChem Innovation Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wen-Chieh Wang
- Institute of Biotechnology and Pharmaceutical Research, Value-Added MedChem Innovation Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Hui-Ping Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Jim-Tong Horng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
2
|
Pallavi B, Singh RP, Jha PN, Chander S, Murugesan S, Sharma P, Shukla P. Green Synthesis, in-vitro Antimicrobial Evaluation, Docking, and SAR Studies of Potent Quinoline-4-Carboxylic Acids. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190123121506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The paper describes the synthesis of quinoline-4-carboxylic acid derivatives employing
completely green methods such as the use of water as solvent and of microwave irradiation for heating.
The prepared molecules were examined for bactericidal and antifungal behavior and two of the tested
compounds showed reasonably good antimicrobial activity. The biological activity results were further
corroborated by fluorescence microscopy and by evaluating their time-dependent bactericidal behavior.
Two of the most potent compounds were then subjected to docking against DNA gyrase protein (PDB
ID: 2XCT) showing possible interactions responsible for the potency of these compounds. Also, an
SAR analysis was proposed based on the results obtained.
Collapse
Affiliation(s)
- Badvel Pallavi
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333301, India
| | - Rajnish Prakash Singh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333301, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333301, India
| | - Subhash Chander
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333301, India
| | | | - Prachi Sharma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333301, India
| | - Paritosh Shukla
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333301, India
| |
Collapse
|
4
|
Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Curr Top Med Chem 2017; 17:2271-2285. [PMID: 28240183 DOI: 10.2174/1568026617666170224122508] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 01/25/2023]
Abstract
Prevention and treatment of influenza virus infection is an ongoing unmet medical need. Each year, thousands of deaths and millions of hospitalizations are attributed to influenza virus infection, which poses a tremendous health and economic burden to the society. Aside from the annual influenza season, influenza viruses also lead to occasional influenza pandemics as a result of emerging or re-emerging influenza strains. Influenza viruses are RNA viruses that exist in quasispecies, meaning that they have a very diverse genetic background. Such a feature creates a grand challenge in devising therapeutic intervention strategies to inhibit influenza virus replication, as a single agent might not be able to inhibit all influenza virus strains. Both classes of currently approved anti-influenza drugs have limitations: the M2 channel blockers amantadine and rimantadine are no longer recommended for use in the U.S. due to predominant drug resistance, and resistance to the neuraminidase inhibitor oseltamivir is continuously on the rise. In pursuing the next generation of antiviral drugs with broad-spectrum activity and higher genetic barrier of drug resistance, the influenza virus nucleoprotein (NP) stands out as a high-profile drug target. This review summarizes recent developments in designing inhibitors targeting influenza NP and their mechanisms of action.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Hannah Sneyd
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Raphael Dekant
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| |
Collapse
|
6
|
Ke YY, Singh VK, Coumar MS, Hsu YC, Wang WC, Song JS, Chen CH, Lin WH, Wu SH, Hsu JTA, Shih C, Hsieh HP. Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci Rep 2015; 5:11702. [PMID: 26118648 PMCID: PMC4483777 DOI: 10.1038/srep11702] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/02/2015] [Indexed: 12/23/2022] Open
Abstract
The inhibition of FMS-like tyrosine kinase 3 (FLT3) activity using small-molecule inhibitors has emerged as a target-based alternative to traditional chemotherapy for the treatment of acute myeloid leukemia (AML). In this study, we report the use of structure-based virtual screening (SBVS), a computer-aided drug design technique for the identification of new chemotypes for FLT3 inhibition. For this purpose, homology modeling (HM) of the DFG-in FLT3 structure was carried using two template structures, including PDB ID: 1RJB (DFG-out FLT3 kinase domain) and PDB ID: 3LCD (DFG-in CSF-1 kinase domain). The modeled structure was able to correctly identify known DFG-in (SU11248, CEP-701, and PKC-412) and DFG-out (sorafenib, ABT-869 and AC220) FLT3 inhibitors, in docking studies. The modeled structure was then used to carry out SBVS of an HTS library of 125,000 compounds. The top scoring 97 compounds were tested for FLT3 kinase inhibition, and two hits (BPR056, IC50 = 2.3 and BPR080, IC50 = 10.7 μM) were identified. Molecular dynamics simulation and density functional theory calculation suggest that BPR056 (MW: 325.32; cLogP: 2.48) interacted with FLT3 in a stable manner and could be chemically optimized to realize a drug-like lead in the future.
Collapse
Affiliation(s)
- Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Vivek Kumar Singh
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Yung Chang Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Wen-Chieh Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Chun-Hwa Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - John T A Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| |
Collapse
|