1
|
Ikram M, Imran M, Hayat S, Shahzadi A, Haider A, Naz S, Ul-Hamid A, Nabgan W, Fazal I, Ali S. MoS 2/cellulose-doped ZnO nanorods for catalytic, antibacterial and molecular docking studies. NANOSCALE ADVANCES 2021; 4:211-225. [PMID: 36132956 PMCID: PMC9417535 DOI: 10.1039/d1na00648g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/30/2021] [Indexed: 05/31/2023]
Abstract
Cellulose nanocrystals (CNCs) and molybdenum disulphide (MoS2) incorporated into ZnO nanorods (NRs) were synthesized via a chemical precipitation route at room temperature. All concerned samples were characterized to examine their optical properties, elemental composition, phase formation, surface morphology and functional group presence. The aim of this research was to enhance the catalytic properties of ZnO by co-doping with various concentrations of CNCs and MoS2 NRs. It was renowned that doped ZnO NRs showed superior catalytic activity compared to bare ZnO NRs. Statistically significant (p < 0.05) inhibition zones for samples were recorded for E. coli and S. aureus at low and high concentrations, respectively. The in vitro bactericidal potential of ZnO-CNC and ZnO-CNC-MoS2 nanocomposites was further confirmed through in silico molecular docking predictions against the DHFR and DHPS enzymes of E. coli and S. aureus. Molecular docking studies suggested the inhibition of these enzyme targets by CNC nanocomposites as a possible mechanism governing their bactericidal activity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Application Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Muhammad Imran
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology Beijing 100029 China
| | - Shoukat Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, University of the Lahore Lahore Pakistan
| | - Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore 54000 Punjab Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Iqra Fazal
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
2
|
Muddala NP, White JC, Nammalwar B, Pratt I, Thomas LM, Bunce RA, Berlin KD, Bourne CR. Inhibitor design to target a unique feature in the folate pocket of Staphylococcus aureus dihydrofolate reductase. Eur J Med Chem 2020; 200:112412. [PMID: 32502861 DOI: 10.1016/j.ejmech.2020.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Staphylococcus aureus (Sa) is a serious concern due to increasing resistance to antibiotics. The bacterial dihydrofolate reductase enzyme is effectively inhibited by trimethoprim, a compound with antibacterial activity. Previously, we reported a trimethoprim derivative containing an acryloyl linker and a dihydophthalazine moiety demonstrating increased potency against S. aureus. We have expanded this series and assessed in vitro enzyme inhibition (Ki) and whole cell growth inhibition properties (MIC). Modifications were focused at a chiral carbon within the phthalazine heterocycle, as well as simultaneous modification at positions on the dihydrophthalazine. MIC values increased from 0.0626-0.5 μg/mL into the 0.5-1 μg/mL range when the edge positions were modified with either methyl or methoxy groups. Changes at the chiral carbon affected Ki measurements but with little impact on MIC values. Our structural data revealed accommodation of predominantly the S-enantiomer of the inhibitors within the folate-binding pocket. Longer modifications at the chiral carbon, such as p-methylbenzyl, protrude from the pocket into solvent and result in poorer Ki values, as do modifications with greater torsional freedom, such as 1-ethylpropyl. The most efficacious Ki was 0.7 ± 0.3 nM, obtained with a cyclopropyl derivative containing dimethoxy modifications at the dihydrophthalazine edge. The co-crystal structure revealed an alternative placement of the phthalazine moiety into a shallow surface at the edge of the site that can accommodate either enantiomer of the inhibitor. The current design, therefore, highlights how to engineer specific placement of the inhibitor within this alternative pocket, which in turn maximizes the enzyme inhibitory properties of racemic mixtures.
Collapse
Affiliation(s)
- N Prasad Muddala
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences I, Stillwater, OK, 74078, USA
| | - John C White
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Baskar Nammalwar
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences I, Stillwater, OK, 74078, USA
| | - Ian Pratt
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Leonard M Thomas
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences I, Stillwater, OK, 74078, USA
| | - K Darrell Berlin
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences I, Stillwater, OK, 74078, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| |
Collapse
|
3
|
He J, Qiao W, An Q, Yang T, Luo Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur J Med Chem 2020; 195:112268. [PMID: 32298876 DOI: 10.1016/j.ejmech.2020.112268] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023]
Abstract
Drug-resistant bacteria pose an increasingly serious threat to mankind all over the world. However, the currently available clinical treatments do not meet the urgent demand.Therefore, it is desirable to find new targets and inhibitors to overcome the problems of antibiotic resistance. Dihydrofolate reductase (DHFR) is an important enzyme required to maintain bacterial growth, and hence inhibitors of DHFR have been proven as effective agents for treating bacterial infections. This review provides insights into the recent discovery of antimicrobial agents targeting DHFR. In particular, three pathogens, Escherichia coli (E. coli), Mycobacterium tuberculosis(Mtb) and Staphylococcus aureus(S. aureus), and research strategies are emphasized. DHFR inhibitors are expected to be good alternatives to fight bacterial infections.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University
| | - Qi An
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Toulouse JL, Abraham SMJ, Kadnikova N, Bastien D, Gauchot V, Schmitzer AR, Pelletier JN. Investigation of Classical Organic and Ionic Liquid Cosolvents for Early-Stage Screening in Fragment-Based Inhibitor Design with Unrelated Bacterial and Human Dihydrofolate Reductases. Assay Drug Dev Technol 2017; 15:141-153. [PMID: 28426233 DOI: 10.1089/adt.2016.768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drug design by methods such as fragment screening requires effective solubilization of millimolar concentrations of small organic compounds while maintaining the properties of the biological target. We investigate four organic solvents and three 1-butyl-3-methylimidazolium (BMIm)-based ionic liquids (ILs) as cosolvents to establish conditions for screening two structurally unrelated dihydrofolate reductases (DHFRs) that are prime drug targets. Moderate concentrations (10%-15%) of cosolvents had little effect on inhibition of the microbial type II R67 DHFR and of human DHFR (hDHFR), while higher concentrations of organic cosolvents generally decreased activity of both DHFRs. In contrast, a specific IL conserved the activity of one DHFR, while severely reducing the activity of the other, and vice versa, illustrating the differing effect of ILs on distinct protein folds. Most of the cosolvents investigated preserved the fold of R67 DHFR and had little effect on binding of the cofactor NADPH, but reduced the productive affinity for its substrate. In contrast, cosolvents resulted in modest structural destabilization of hDHFR with little effect on productive affinity. We conclude that the organic cosolvents, methanol, dimethylformamide, and dimethylsulfoxide, offer the most balanced conditions for early-stage compound screening as they maintain sufficient biological activity of both DHFRs while allowing for compound dissolution in the millimolar range. However, IL cosolvents showed poor capacity to solubilize organic compounds at millimolar concentrations, mitigating their utility in early-stage screening. Nonetheless, ILs could provide an alternative to classical organic cosolvents when low concentrations of inhibitors are used, as when characterizing higher affinity inhibitors.
Collapse
Affiliation(s)
- Jacynthe L Toulouse
- 1 Département de Biochimie, Université de Montréal , Québec, Canada .,2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada
| | - Sarah M J Abraham
- 2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| | - Natalia Kadnikova
- 2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| | - Dominic Bastien
- 1 Département de Biochimie, Université de Montréal , Québec, Canada .,2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada
| | - Vincent Gauchot
- 2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| | - Andreea R Schmitzer
- 2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| | - Joelle N Pelletier
- 1 Département de Biochimie, Université de Montréal , Québec, Canada .,2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| |
Collapse
|
5
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
6
|
Muddala NP, Nammalwar B, Selvaraju S, Bourne CR, Henry M, Bunce RA, Berlin KD, Barrow EW, Barrow WW. Evaluation of New Dihydrophthalazine-Appended 2,4-Diaminopyrimidines against Bacillus anthracis: Improved Syntheses Using a New Pincer Complex. Molecules 2015; 20:7222-44. [PMID: 25905602 PMCID: PMC4445145 DOI: 10.3390/molecules20047222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 02/05/2023] Open
Abstract
The synthesis and evaluation of ten new dihydrophthalazine-appended 2,4-diaminopyrimidines as potential drugs to treat Bacillus anthracis is reported. An improved synthesis utilizing a new pincer catalyst, dichlorobis[1-(dicyclohexylphosphanyl)-piperidine]palladium(II), allows the final Heck coupling to be performed at 90 °C using triethylamine as the base. These milder conditions have been used to achieve improved yields for new and previously reported substrates with functional groups that degrade or react at the normal 140 °C reaction temperature. An analytical protocol for separating the S and R enantiomers of two of the most active compounds is also disclosed. Finally, the X-ray structure for the most active enantiomer of the lead compound, (S)-RAB1, is given.
Collapse
Affiliation(s)
- Nagendra Prasad Muddala
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - Baskar Nammalwar
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - Subhashini Selvaraju
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| | - Mary Henry
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - K Darrell Berlin
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - Esther W Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - William W Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| |
Collapse
|
7
|
Nammalwar B, Bourne CR, Wakeham N, Bourne PC, Barrow EW, Muddala NP, Bunce RA, Berlin KD, Barrow WW. Modified 2,4-diaminopyrimidine-based dihydrofolate reductase inhibitors as potential drug scaffolds against Bacillus anthracis. Bioorg Med Chem 2014; 23:203-11. [PMID: 25435253 DOI: 10.1016/j.bmc.2014.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/14/2022]
Abstract
The current Letter describes the synthesis and biological evaluation of dihydrophthalazine-appended 2,4-diaminopyrimidine (DAP) inhibitors (1) oxidized at the methylene bridge linking the DAP ring to the central aromatic ring and (2) modified at the central ring ether groups. Structures 4a-b incorporating an oxidized methylene bridge showed a decrease in activity, while slightly larger alkyl groups (CH2CH3 vs CH3) on the central ring oxygen atoms (R(2) and R(3)) had a minimal impact on the inhibition. Comparison of the potency data for previously reported RAB1 and BN-53 with the most potent of the new derivatives (19 b and 20a-b) showed similar values for inhibition of cellular growth and direct enzymatic inhibition (MICs 0.5-2 μg/mL). Compounds 29-34 with larger ester and ether groups containing substituted aromatic rings at R(3) exhibited slightly reduced activity (MICs 2-16 μg/mL). One explanation for this attenuated activity could be encroachment of the extended R(3) into the neighboring NADPH co-factor. These results indicate that modest additions to the central ring oxygen atoms are well tolerated, while larger modifications have the potential to act as dual-site inhibitors of dihydrofolate reductase (DHFR).
Collapse
Affiliation(s)
- Baskar Nammalwar
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| | - Christina R Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Nancy Wakeham
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Philip C Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Esther W Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - N Prasad Muddala
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - K Darrell Berlin
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| | - William W Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| |
Collapse
|
8
|
4,5-Dimethylbenzene-1,2-dimethanol. MOLBANK 2014. [DOI: 10.3390/m835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Ibrahim HS, Eldehna WM, Abdel-Aziz HA, Elaasser MM, Abdel-Aziz MM. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds. Eur J Med Chem 2014; 85:480-6. [PMID: 25113876 DOI: 10.1016/j.ejmech.2014.08.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 11/20/2022]
Abstract
RAB1 5 is a lead antibacterial agent in which trimethoprim is linked to phthalazine moiety. Similarly, our strategy in this research depends on the interconnection between some sulfa drugs and certain phthalazin-1(2H)-one scaffolds in an attempt to enhance their antibacterial activity. This approach was achieved through the combination of 4-substituted phthalazin-1(2H)-ones 9a, b or 14a, b with sulfanilamide 1a, sulfathiazole 1b or sulfadiazine 1c through amide linkers 6a, b to produce the target compounds 10a-d and 15a-e, respectively. The antibacterial activity of the newly synthesized compounds showed that all tested compounds have antibacterial activity higher than that of their reference sulfa drugs 1a-c. Compound 10c represented the highest antibacterial activity against Gram-positive bacteria Streptococcus pneumonia and Staphylococcus aureus with MIC = 0.39 μmol/mL. Moreover, compound 10d displayed excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Salmonella typhimurium with MIC = 0.39 and 0.78 μmol/mL, respectively.
Collapse
Affiliation(s)
- Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Helwan 11829, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Helwan 11829, Egypt
| | - Hatem A Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt.
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Nammalwar B, Muddala NP, Bourne CR, Henry M, Bourne PC, Bunce RA, Barrow EW, Berlin KD, Barrow WW. Synthesis and biological evaluation of 2,4-diaminopyrimidine-based antifolate drugs against Bacillus anthracis. Molecules 2014; 19:3231-46. [PMID: 24642909 PMCID: PMC4016962 DOI: 10.3390/molecules19033231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 11/16/2022] Open
Abstract
Due to the innate ability of bacteria to develop resistance to available antibiotics, there is a critical need to develop new agents to treat more resilient strains. As a continuation of our research in this area, we have synthesized a series of racemic 2,4-diaminopyrimidine-based drug candidates, and evaluated them against Bacillus anthracis. The structures are comprised of a 2,4-diaminopyrimidine ring, a 3,4-dimethoxybenzyl ring, and an N-acryloyl-substituted 1,2-dihydrophthalazine ring. Various changes were made at the C1 stereocenter of the dihydrophthalazine moiety in the structure, and the biological activity was assessed by measurement of the MIC and K(i) values to identify the most potent drug candidate.
Collapse
Affiliation(s)
- Baskar Nammalwar
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - N Prasad Muddala
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - Christina R Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Mary Henry
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Philip C Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - Esther W Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - K Darrell Berlin
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA.
| | - William W Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| |
Collapse
|
11
|
Bourne CR, Wakeham N, Webb N, Nammalwar B, Bunce RA, Berlin KD, Barrow WW. The structure and competitive substrate inhibition of dihydrofolate reductase from Enterococcus faecalis reveal restrictions to cofactor docking. Biochemistry 2014; 53:1228-38. [PMID: 24495113 PMCID: PMC3985486 DOI: 10.1021/bi401104t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
We
are addressing bacterial resistance to antibiotics by repurposing
a well-established classic antimicrobial target, the dihydrofolate
reductase (DHFR) enzyme. In this work, we have focused on Enterococcus faecalis, a nosocomial pathogen that frequently
harbors antibiotic resistance determinants leading to complicated
and difficult-to-treat infections. An inhibitor series with a hydrophobic
dihydrophthalazine heterocycle was designed from the anti-folate trimethoprim.
We have examined the potency of this inhibitor series based on inhibition
of DHFR enzyme activity and bacterial growth, including in the presence
of the exogenous product analogue folinic acid. The resulting preferences
were rationalized using a cocrystal structure of the DHFR from this
organism with a propyl-bearing series member (RAB-propyl). In a companion
apo structure, we identify four buried waters that act as placeholders
for a conserved hydrogen-bonding network to the substrate and indicate
an important role in protein stability during catalytic cycling. In
these structures, the nicotinamide of the nicotinamide adenine dinucleotide
phosphate cofactor is visualized outside of its binding pocket, which
is exacerbated by RAB-propyl binding. Finally, homology models of
the TMPR sequences dfrK and dfrF were constructed. While the dfrK-encoded protein
shows clear sequence changes that would be detrimental to inhibitor
binding, the dfrF-encoded protein model suggests
the protein would be relatively unstable. These data suggest a utility
for anti-DHFR compounds for treating infections arising from E. faecalis. They also highlight a role for water in stabilizing
the DHFR substrate pocket and for competitive substrate inhibitors
that may gain advantages in potency by the perturbation of cofactor
dynamics.
Collapse
Affiliation(s)
- Christina R Bourne
- Department of Veterinary Pathobiology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | | | | | | | | | | | | |
Collapse
|