1
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
2
|
Kassu M, Parvatkar PT, Milanes J, Monaghan NP, Kim C, Dowgiallo M, Zhao Y, Asakawa AH, Huang L, Wagner A, Miller B, Carter K, Barrett KF, Tillery LM, Barrett LK, Phan IQ, Subramanian S, Myler PJ, Van Voorhis WC, Leahy JW, Rice CA, Kyle DE, Morris J, Manetsch R. Shotgun Kinetic Target-Guided Synthesis Approach Enables the Discovery of Small-Molecule Inhibitors against Pathogenic Free-Living Amoeba Glucokinases. ACS Infect Dis 2023; 9:2190-2201. [PMID: 37820055 PMCID: PMC10644346 DOI: 10.1021/acsinfecdis.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 10/13/2023]
Abstract
Pathogenic free-living amoebae (pFLA) can cause life-threatening central nervous system (CNS) infections and warrant the investigation of new chemical agents to combat the rise of infection from these pathogens. Naegleria fowleri glucokinase (NfGlck), a key metabolic enzyme involved in generating glucose-6-phosphate, was previously identified as a potential target due to its limited sequence similarity with human Glck (HsGlck). Herein, we used our previously demonstrated multifragment kinetic target-guided synthesis (KTGS) screening strategy to identify inhibitors against pFLA glucokinases. Unlike the majority of previous KTGS reports, our current study implements a "shotgun" approach, where fragments were not biased by predetermined binding potentials. The study resulted in the identification of 12 inhibitors against 3 pFLA glucokinase enzymes─NfGlck, Balamuthia mandrillaris Glck (BmGlck), and Acanthamoeba castellanii Glck (AcGlck). This work demonstrates the utility of KTGS to identify small-molecule binders for biological targets where resolved X-ray crystal structures are not readily accessible.
Collapse
Affiliation(s)
- Mintesinot Kassu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Prakash T. Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Jillian Milanes
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Neil P. Monaghan
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Chungsik Kim
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Matthew Dowgiallo
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Yingzhao Zhao
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Ami H. Asakawa
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Lili Huang
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Alicia Wagner
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Brandon Miller
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Karissa Carter
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kayleigh F. Barrett
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Logan M. Tillery
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Lynn K. Barrett
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Isabelle Q. Phan
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Sandhya Subramanian
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Peter J. Myler
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Wesley C. Van Voorhis
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - James W. Leahy
- Department of Chemistry, University
of
South Florida, Tampa, Florida 33620, United States
| | - Christopher A. Rice
- Department
of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Institute for Drug Discovery (PIDD), Purdue
University, West Lafayette, Indiana 47907, United States
- Purdue Institute
of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Dennis E. Kyle
- Department
of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James Morris
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Roman Manetsch
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Nacheva K, Kulkarni SS, Kassu M, Flanigan D, Monastyrskyi A, Iyamu ID, Doi K, Barber M, Namelikonda N, Tipton JD, Parvatkar P, Wang HG, Manetsch R. Going beyond Binary: Rapid Identification of Protein-Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach. J Med Chem 2023; 66:5196-5207. [PMID: 37000900 PMCID: PMC10620989 DOI: 10.1021/acs.jmedchem.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 04/03/2023]
Abstract
Kinetic target-guided synthesis (KTGS) is a powerful screening approach that enables identification of small molecule modulators for biomolecules. While many KTGS variants have emerged, a majority of the examples suffer from limited throughput and a poor signal/noise ratio, hampering reliable hit detection. Herein, we present our optimized multifragment KTGS screening strategy that tackles these limitations. This approach utilizes selected reaction monitoring liquid chromatography tandem mass spectrometry for hit detection, enabling the incubation of 190 fragment combinations per screening well. Consequentially, our fragment library was expanded from 81 possible combinations to 1710, representing the largest KTGS screening library assembled to date. The expanded library was screened against Mcl-1, leading to the discovery of 24 inhibitors. This work unveils the true potential of KTGS with respect to the rapid and reliable identification of hits, further highlighting its utility as a complement to the existing repertoire of screening methods used in drug discovery.
Collapse
Affiliation(s)
- Katya Nacheva
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sameer S. Kulkarni
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Mintesinot Kassu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - David Flanigan
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Sciences, Hillsborough Community College, Tampa, Florida 33619, United States
| | - Andrii Monastyrskyi
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Iredia D. Iyamu
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kenichiro Doi
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Megan Barber
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Niranjan Namelikonda
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeremiah D. Tipton
- Proteomics
and Mass Spectrometry Core Facility, University
of South Florida, Tampa, Florida 33620, United States
| | - Prakash Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Hong-Gang Wang
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Roman Manetsch
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center for
Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Lossouarn A, Renard PY, Sabot C. Tailored Bioorthogonal and Bioconjugate Chemistry: A Source of Inspiration for Developing Kinetic Target-Guided Synthesis Strategies. Bioconjug Chem 2020; 32:63-72. [PMID: 33232599 DOI: 10.1021/acs.bioconjchem.0c00568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Kinetic target-guided synthesis (KTGS) is a promising tool for the discovery of biologically active compounds. It relies on the identification of potent ligands that are covalently assembled by the biological targets themselves from a pool of reagents. Significant effort is devoted to developing new KTGS strategies; however, only a handful of biocompatible reactions are available, which may be insufficient to meet the specificities (stability, dynamics, active site topology, etc.) of a wide range of biological targets with therapeutic potential. This Topical Review proposes a retrospective analysis of existing KTGS ligation tools, in terms of their kinetics and analogy with other biocompatible reactions, and provides new clues to expand the KTGS toolkit. By way of examples, a nonexhaustive selection of such chemical ligation tools belonging to different classes of reactions as promising candidate reactions for KTGS are suggested.
Collapse
Affiliation(s)
- Alexis Lossouarn
- Normandie Université, Centre National de la Recherche Scientifique, UNIROUEN, INSA Rouen, COBRA, UMR 6014 & FR 3038, 76000, Rouen, France
| | - Pierre-Yves Renard
- Normandie Université, Centre National de la Recherche Scientifique, UNIROUEN, INSA Rouen, COBRA, UMR 6014 & FR 3038, 76000, Rouen, France
| | - Cyrille Sabot
- Normandie Université, Centre National de la Recherche Scientifique, UNIROUEN, INSA Rouen, COBRA, UMR 6014 & FR 3038, 76000, Rouen, France
| |
Collapse
|
5
|
Bosc D, Camberlein V, Gealageas R, Castillo-Aguilera O, Deprez B, Deprez-Poulain R. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity. J Med Chem 2019; 63:3817-3833. [PMID: 31820982 DOI: 10.1021/acs.jmedchem.9b01183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinetic target-guided synthesis (KTGS) is an original discovery strategy allowing a target to catalyze the irreversible synthesis of its own ligands from a pool of reagents. Although pioneered almost two decades ago, it only recently proved its usefulness in medicinal chemistry, as exemplified by the increasing number of protein targets used, the wider range of target and pocket types, and the diversity of therapeutic areas explored. In recent years, two new leads for in vivo studies were released. Amidations and multicomponent reactions expanded the armamentarium of reactions beyond triazole formation and two new examples of in cellulo KTGS were also disclosed. Herein, we analyze the origins and the chemical space of both KTGS ligands and warhead-bearing reagents. We review the KTGS timeline focusing on recent cases in order to give medicinal chemists the full scope of this strategy which has great potential for hit discovery and hit or lead optimization.
Collapse
Affiliation(s)
- Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Virgyl Camberlein
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Omar Castillo-Aguilera
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France.,Institut Universitaire de France, F- 75005 Paris, France
| |
Collapse
|
6
|
Gladysz R, Vrijdag J, Van Rompaey D, Lambeir A, Augustyns K, De Winter H, Van der Veken P. Efforts towards an On‐Target Version of the Groebke–Blackburn–Bienaymé (GBB) Reaction for Discovery of Druglike Urokinase (uPA) Inhibitors. Chemistry 2019; 25:12380-12393. [DOI: 10.1002/chem.201901917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Rafaela Gladysz
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Johannes Vrijdag
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
- Laboratory of Medical BiochemistryDepartment of, Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Dries Van Rompaey
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Anne‐Marie Lambeir
- Laboratory of Medical BiochemistryDepartment of, Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| |
Collapse
|
7
|
Alexander JR, Ott AA, Liu EC, Topczewski JJ. Kinetic Resolution of Cyclic Secondary Azides, Using an Enantioselective Copper-Catalyzed Azide-Alkyne Cycloaddition. Org Lett 2019; 21:4355-4358. [PMID: 31117717 DOI: 10.1021/acs.orglett.9b01556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An enantioselective copper-catalyzed azide-alkyne cycloaddition (E-CuAAC) is reported by kinetic resolution. Chiral triazoles were isolated in high yield with limiting alkyne (up to 97:3 enantiomeric ratio (er)). A range of substrates were tolerated (>30 examples), and the reaction was scaled to >1 g. The er of a triazole product could be enhanced by recrystallization and the recovered scalemic azide could be racemized and recycled. Recycling the azide allows efficient use of the undesired azide enantiomer.
Collapse
Affiliation(s)
- Juliana R Alexander
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Amy A Ott
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - En-Chih Liu
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Joseph J Topczewski
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
8
|
Antti H, Sellstedt M. Cell-Based Kinetic Target-Guided Synthesis of an Enzyme Inhibitor. ACS Med Chem Lett 2018; 9:351-353. [PMID: 29670699 DOI: 10.1021/acsmedchemlett.7b00535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/04/2018] [Indexed: 12/22/2022] Open
Abstract
Finding a new drug candidate for a selected target is an expensive and time-consuming process. Target guided-synthesis, or in situ click chemistry, is a concept where the drug target is used to template the formation of its own inhibitors from reactive building blocks. This could simplify the identification of drug candidates. However, with the exception of one example of an RNA-target, target-guided synthesis has always employed purified targets. This limits the number of targets that can be screened by the method. By applying methods from the field of metabolomics, we demonstrate that target-guided synthesis with protein targets also can be performed directly in cell-based systems. These methods offer new possibilities to conduct screening for drug candidates of difficult protein targets in cellular environments.
Collapse
Affiliation(s)
- Henrik Antti
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | |
Collapse
|
9
|
Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey. Future Med Chem 2016; 8:381-404. [DOI: 10.4155/fmc-2015-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
For the last 15 years, kinetic target-guided syntheses, including in situ click chemistry, have been used as alternative methods to find ligands to therapeutically relevant proteins. In this review, a comprehensive survey of biological targets used in kinetic target-guided synthesis covers historical and recent examples. The chemical reactions employed and practical aspects, including controls, library sizes and product detection, are presented. A particular focus is on the reagents and warhead selection and design with a critical overview of the challenges encountered. As protein supply remains a key success factor, it appears that increased efforts should be taken toward miniaturization in order to expand the scope of this strategy and qualify it as a fully fledged drug discovery tool.
Collapse
|
10
|
Hu MH, Chen X, Chen SB, Ou TM, Yao M, Gu LQ, Huang ZS, Tan JH. A new application of click chemistry in situ: development of fluorescent probe for specific G-quadruplex topology. Sci Rep 2015; 5:17202. [PMID: 26603780 PMCID: PMC4658637 DOI: 10.1038/srep17202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/27/2015] [Indexed: 11/28/2022] Open
Abstract
Target-guided synthesis is an approach to drug discovery that allows the target to self-assemble its own binding agents. So far, target-guided synthesis and especially in situ click chemistry have attracted extensive attention and have led to the identification of highly potent inhibitors for proteins. In this study, we expand the application of in situ click chemistry and present a procedure using this approach to identify selective fluorescent probes for a specific topology of G-quadruplex nucleic acids, the parallel G-quadruplexes. On this basis, compound 15 assembled by triarylimidazole scaffold and carboxyl side chain was a positive hit, demonstrating highly potential in the sensitive and selective detection of parallel G-quadruplexes. Such selective fluorescence response can be rationalized in terms of different binding affinities between 15 and G-quadruplexes. Our work accordingly represents a new development towards the application of in situ click chemistry to develop selective fluorescent probes and may also shed light on the search for probes for a specific G-quadruplex topology.
Collapse
Affiliation(s)
- Ming-Hao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|