1
|
Kublanovsky M, Aharoni A, Levy D. Enhanced PKMT-substrate recognition through non active-site interactions. Biochem Biophys Res Commun 2018; 501:1029-1033. [PMID: 29778536 DOI: 10.1016/j.bbrc.2018.05.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on many different cellular proteins. Despite extensive biochemical and structural studies, focusing on PKMT active site-peptide interactions, little is known regarding how PKMTs recognize globular substrates. To examine whether these enzymes recognize protein substrates through interactions that take place outside of the active site, we have measured SETD6 and SETD7 activity with both protein and peptide RelA substrate. We have utilized the MTase-Glo™ methyltransferase assay to measure the activity of SETD6 and SETD7 with the different RelA substrates and calculated the Michaelis-Menten (MM) parameters. We found an up to ∼12-fold increase in KM of the PKMTs activity with RelA peptide relative to the respective full-length protein, emphasizing the significantly higher PKMT-protein interaction affinity. Examination of SETD6 and SETD7 activity toward the same RelA substrates highlight the similarity in substrate recognition for both PKMTs. Our results show that the interaction affinity of SETD6 and SETD7 with RelA is enhanced through interactions that occur outside of the active site leading to higher catalytic efficiency and specificity. These interactions can significantly vary depending on the PKMT and the specific methylation site on RelA. Overall, our results underline that PKMTs can recognize their substrates through docking interactions that occur out of the active site-peptide region for enhancing their activity and specificity in the cellular environment.
Collapse
Affiliation(s)
- Margarita Kublanovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Amir Aharoni
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| |
Collapse
|
2
|
Guitot K, Drujon T, Burlina F, Sagan S, Beaupierre S, Pamlard O, Dodd RH, Guillou C, Bolbach G, Sachon E, Guianvarc'h D. A direct label-free MALDI-TOF mass spectrometry based assay for the characterization of inhibitors of protein lysine methyltransferases. Anal Bioanal Chem 2017; 409:3767-3777. [PMID: 28389916 DOI: 10.1007/s00216-017-0319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/27/2022]
Abstract
Histone lysine methylation is associated with essential biological functions like transcription activation or repression, depending on the position and the degree of methylation. This post-translational modification is introduced by protein lysine methyltransferases (KMTs) which catalyze the transfer of one to three methyl groups from the methyl donor S-adenosyl-L-methionine (AdoMet) to the amino group on the side chain of lysines. The regulation of protein lysine methylation plays a primary role not only in the basic functioning of normal cells but also in various pathologies and KMT deregulation is associated with diseases including cancer. These enzymes are therefore attractive targets for the development of new antitumor agents, and there is still a need for direct methodology to screen, identify, and characterize KMT inhibitors. We report here a simple and robust in vitro assay to quantify the enzymatic methylation of KMT by MALDI-TOF mass spectrometry. Following this protocol, we can monitor the methylation events over time on a peptide substrate. We detect in the same spectrum the modified and unmodified substrates, and the ratios of both signals are used to quantify the amount of methylated substrate. We first demonstrated the validity of the assay by determining inhibition parameters of two known inhibitors of the KMT SET7/9 ((R)-PFI-2 and sinefungin). Next, based on structural comparison with these inhibitors, we selected 42 compounds from a chemical library. We applied the MALDI-TOF assay to screen their activity as inhibitors of the KMT SET7/9. This study allowed us to determine inhibition constants as well as kinetic parameters of a series of SET7/9 inhibitors and to initiate a structure activity discussion with this family of compounds. This assay is versatile and can be easily adapted to other KMT substrates and enzymes as well as automatized.
Collapse
Affiliation(s)
- Karine Guitot
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Thierry Drujon
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Fabienne Burlina
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Sandrine Sagan
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Sandra Beaupierre
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Olivier Pamlard
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Robert H Dodd
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Catherine Guillou
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Gérard Bolbach
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.,UPMC Univ Paris 06, IBPS/FR3631, Plateforme de Spectrométrie de Masse et Protéomique, 7-9 Quai Saint Bernard, 75005, Paris, France
| | - Emmanuelle Sachon
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.,UPMC Univ Paris 06, IBPS/FR3631, Plateforme de Spectrométrie de Masse et Protéomique, 7-9 Quai Saint Bernard, 75005, Paris, France
| | - Dominique Guianvarc'h
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France. .,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.
| |
Collapse
|
3
|
Duchin S, Vershinin Z, Levy D, Aharoni A. A continuous kinetic assay for protein and DNA methyltransferase enzymatic activities. Epigenetics Chromatin 2015; 8:56. [PMID: 26675044 PMCID: PMC4678762 DOI: 10.1186/s13072-015-0048-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methyltransferases (MTs) catalyze the S-adenosylmethionine (SAM)-dependent methylation of a wide variety of protein and DNA substrates. Methylation of lysine, arginine or cytosine regulates a variety of biological processes including transcriptional activation and gene silencing. Despite extensive studies of the cellular roles of MTs, their quantitative kinetic characterization remains challenging. In the past decade, several assays have been developed to monitor methyl transfer activity utilizing different approaches including radiolabeling, antibodies or mass-spectrometry analysis. However, each approach suffers from different limitation and no easy continuous assay for detection of MT activity exists. RESULTS We have developed a continuous coupled assay for the general detection of MTs activity. In this assay, the formation of S-adenosylhomocysteine (SAH) product is coupled NAD(P)H oxidation through three enzyme reactions including glutamate dehydrogenase leading to absorbance changes at 340 nm. The utility and versatility of this assay is demonstrated for SET7/9 and SETD6 with peptides and full length protein substrates and for M.HaeIII with a DNA substrate. CONCLUSIONS This study shows a simple and robust assay for the continuous monitoring of MT enzymatic activity. This assay can be used for the determination of steady-state kinetic enzymatic parameters (e.g., k cat and K M) for a wide variety of MTs and can be easily adapted for high-throughput detection of MT activity for various applications.
Collapse
Affiliation(s)
- Shai Duchin
- Departments of Life Sciences, Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel
| | - Zlata Vershinin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel
| | - Amir Aharoni
- Departments of Life Sciences, Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel
| |
Collapse
|
4
|
Casciello F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. Front Immunol 2015; 6:487. [PMID: 26441991 PMCID: PMC4585248 DOI: 10.3389/fimmu.2015.00487] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications of DNA and histones are epigenetic mechanisms, which affect the chromatin structure, ultimately leading to gene expression changes. A number of different epigenetic enzymes are actively involved in the addition or the removal of various covalent modifications, which include acetylation, methylation, phosphorylation, ubiquitination, and sumoylation. Deregulation of these processes is a hallmark of cancer. For instance, G9a, a histone methyltransferase responsible for histone H3 lysine 9 (H3K9) mono- and dimethylation, has been observed to be upregulated in different types of cancer and its overexpression has been associated with poor prognosis. Key roles played by these enzymes in various diseases have led to the hypothesis that these molecules represent valuable targets for future therapies. Several small molecule inhibitors have been developed to specifically block the epigenetic activity of these enzymes, representing promising therapeutic tools in the treatment of human malignancies, such as cancer. In this review, the role of one of these epigenetic enzymes, G9a, is discussed, focusing on its functional role in regulating gene expression as well as its implications in cancer initiation and progression. We also discuss important findings from recent studies using epigenetic inhibitors in cell systems in vitro as well as experimental tumor growth and metastasis assays in vivo.
Collapse
Affiliation(s)
- Francesco Casciello
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; School of Natural Sciences, Griffith University , Nathan, QLD , Australia
| | - Karolina Windloch
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Frank Gannon
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Jason S Lee
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Kelvin Grove, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
5
|
Richardson SL, Hanjra P, Zhang G, Mackie BD, Peterson DL, Huang R. A direct, ratiometric, and quantitative MALDI-MS assay for protein methyltransferases and acetyltransferases. Anal Biochem 2015; 478:59-64. [PMID: 25778392 DOI: 10.1016/j.ab.2015.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pahul Hanjra
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Gang Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Brianna D Mackie
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Darrell L Peterson
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|