1
|
Okouakoua FY, Kayath CA, Mokemiabeka SN, Moukala DCR, Kaya-Ongoto MD, Nguimbi E. Involvement of the Bacillus SecYEG Pathway in Biosurfactant Production and Biofilm Formation. Int J Microbiol 2024; 2024:6627190. [PMID: 38725978 PMCID: PMC11081756 DOI: 10.1155/2024/6627190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
With Bacillus species, about 30% of extracellular proteins are translocated through the cytoplasmic membrane, coordinated by the Sec translocase. This system mainly consists of the cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel. The purpose of this work was to investigate the effects of the SecYEG export system on the production of industrial biomolecules, such as biosurfactants, proteases, amylases, and cellulases. Fifty-two isolates of Bacillus species were obtained from traditional fermented foods and then characterized using molecular microbiology methods. The isolates secreted exoenzymes that included cellulases, amylases, and proteases. We present evidence that a biosurfactant-like molecule requires the SecA ATPase and the SecYEG membrane channel for its secretion. In addition, we showed that biomolecules involved in biofilm formation required the SecYEG pathway. This work presents a novel seven-target fragment multiplex PCR assay capable of identification at the species level of Bacillus through a unique SecDF chromosomal gene. The bacterial membrane protein SecDF allowed the discrimination of Bacillus subtilis, B. licheniformis, B. amyloliquefaciens, and B. sonorensis. SecA was able to interact with AprE, AmyE, and TasA. The Rose Bengal inhibitor of SecA crucially affected the interaction of AprE, AmyE, TapA, and TasA with recombinant Gst-SecA. The Rose Bengal prevented Bacillus species from secreting and producing proteases, cellulases, amylases, and biosurfactant-like molecules. It also inhibited the formation of biofilm cell communities. The data support, for the first time, that the SecYEG translocon mediates the secretion of a biosurfactant-like molecule.
Collapse
Affiliation(s)
- Frédéric Yannick Okouakoua
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Christian Aimé Kayath
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Saturnin Nicaise Mokemiabeka
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - David Charles Roland Moukala
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Moïse Doria Kaya-Ongoto
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Etienne Nguimbi
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| |
Collapse
|
2
|
Jian T, Su Q, Liu Y, Seoh HK, Houghton JE, Tai PC, Huang X. Structure-Based Virtual Screening of Helicobacter pylori SecA Inhibitors. IEEE Trans Nanobioscience 2023; 22:933-942. [PMID: 37030876 DOI: 10.1109/tnb.2023.3259946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
The human bacterial pathogen Helicobacter pylori causes a range of gastric diseases. The killing rate of Helicobacter pylori is declining year by year because of high antibiotics resistance. It is urgent to develop new target and novel anti- Helicobacter pylori drugs. As an "energy pump" for bacterial cells, SecA is essential for bacterial growth and drives bacterial protein transmembrane transport, moreover SecA is absent in mammals, all of which nominate SecA as an attractive antimicrobial target. Here, we provided a structure-based virtual screening method to screen the 3D-diversity natural-product-like screening library against SecA for novel anti- Helicobacter pylori inhibitors with novel scaffolds. In this study, homology modeling was used to construct the three-dimensional structure of Helicobacter pylori SecA. Two rounds of molecular docking were then used to find new small-molecule inhibitors of SecA, identifying six lead candidates that maintained key interactions with the binding pocket. After that, molecular dynamics simulations were used to explore more accurate ligand-receptor binding modes in states close to natural conditions. Encouragingly, all six compounds were relatively stable during the simulation. Apart from that the binding free energy calculation based on MM/PBSA demonstrated favorable results of < -13.642 kcal/mol. Finally, ADME-T analysis indicated that these compounds were also sufficiently druggable. All six compounds can be well combined with the crystal structure, which further facilitate the development of SecA inhibitors and lead compounds against Helicobacter pylori.
Collapse
|
3
|
Italia A, Shaik MM, Peri F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules 2023; 13:999. [PMID: 37371579 PMCID: PMC10296423 DOI: 10.3390/biom13060999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging pharmacological strategies that target major virulence factors of antibiotic-resistant Mycobacterium tuberculosis (Mtb) are presented and discussed. This review is divided into three parts corresponding to structures and functions important for Mtb pathogenicity: the cell wall, the lipoarabinomannan, and the secretory proteins. Within the cell wall, we further focus on three biopolymeric sub-components: mycolic acids, arabinogalactan, and peptidoglycan. We present a comprehensive overview of drugs and drug candidates that target cell walls, envelopes, and secretory systems. An understanding at a molecular level of Mtb pathogenesis is provided, and potential future directions in therapeutic strategies are suggested to access new drugs to combat the growing global threat of antibiotic-resistant Mtb infection.
Collapse
Affiliation(s)
| | | | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (A.I.); (M.M.S.)
| |
Collapse
|
4
|
Dai K, Chen Q, Xie W, Lu K, Yan Z, Peng M, Li C, Tu Y, Ding T. Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir
III
Pincer Complex. Angew Chem Int Ed Engl 2022; 61:e202206446. [DOI: 10.1002/anie.202206446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kun‐Long Dai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Qi‐Long Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Wen‐Ping Xie
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Zhi‐Bo Yan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Meng Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Chang‐Kun Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong‐Qiang Tu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Tong‐Mei Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
5
|
Dai KL, Chen QL, Xie WP, Lu K, Yan ZB, Peng M, Li CK, Tu Y, Ding TM. Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir(III) Pincer Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun-Long Dai
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qi-Long Chen
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Wen-Ping Xie
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Ka Lu
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Zhi-Bo Yan
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Meng Peng
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Chang-Kun Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yongqiang Tu
- Lanzhou University Chemistry 222 Tianshui Road South 730000 Lanzhou CHINA
| | - Tong-Mei Ding
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
6
|
Potteth US, Upadhyay T, Saini S, Saraogi I. Novel Antibacterial Targets in Protein Biogenesis Pathways. Chembiochem 2021; 23:e202100459. [PMID: 34643994 DOI: 10.1002/cbic.202100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has emerged as a global threat due to the ability of bacteria to quickly evolve in response to the selection pressure induced by anti-infective drugs. Thus, there is an urgent need to develop new antibiotics against resistant bacteria. In this review, we discuss pathways involving bacterial protein biogenesis as attractive antibacterial targets since many of them are essential for bacterial survival and virulence. We discuss the structural understanding of various components associated with bacterial protein biogenesis, which in turn can be utilized for rational antibiotic design. We highlight efforts made towards developing inhibitors of these pathways with insights into future possibilities and challenges. We also briefly discuss other potential targets related to protein biogenesis.
Collapse
Affiliation(s)
- Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal - 462066, Madhya Pradesh, India
| |
Collapse
|
7
|
Thiouracil SecA inhibitors: bypassing the effects of efflux pumps and attenuating virulence factor secretion in MRSA and Bacillus anthracis. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen. Microorganisms 2021; 9:microorganisms9030592. [PMID: 33805695 PMCID: PMC8000395 DOI: 10.3390/microorganisms9030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO’s top pathogens list). Seven of them—HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14—representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 μM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9–77.8 μM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 μM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 μM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.
Collapse
|
9
|
|
10
|
Wu H, Liu S, Wang Y, Yuan M, Zhang H, Zhou H, Xiao L, Zheng C, Xu H. An efficient approach for the synthesis of 1,2-dihydroxanthones enabled by one-pot Claisen condensation/cyclization reactions. Org Biomol Chem 2021; 19:4126-4131. [PMID: 33870388 DOI: 10.1039/d1ob00470k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mild, efficient method for the synthesis of 1,2-dihydroxanthones by a one-pot reaction was developed under waste-induced relay catalysis.
Collapse
Affiliation(s)
- Huaimo Wu
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Song Liu
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Youyi Wang
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Man Yuan
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Hong Zhang
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Hua Zhou
- Shuguang Hospital
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Lianbo Xiao
- Institute of Arthritis Research
- Shanghai Academy of Chinese Medical Sciences
- Guanghua Integrative Medicine Hospital
- Shanghai 200052
- China
| | - Changwu Zheng
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- Key Laboratory of Synthetic Chemistry of Natural Substances
| | - Hongxi Xu
- Shuguang Hospital
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
11
|
Bamba F, Jin J, Tai PC, Wang B. Synthesis and biological evaluation of novel 4-oxo-5-cyano thiouracil derivatives as SecA inhibitors. HETEROCYCL COMMUN 2020. [DOI: 10.1515/hc-2020-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe continuous emergence of drug-resistant strains of bacteria poses an urgent risk to human health and dictates the need for new antimicrobials. Along this line, we have been working on developing inhibitors of SecA, a key component of the bacterial Sec-dependent secretion machinery. Herein, we describe the synthesis and antimicrobial evaluation of 6-oxo-1,6-dihydropyrimidine-5-carbonitrile derivatives as potential SecA inhibitors.
Collapse
Affiliation(s)
- Fante Bamba
- Departments of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
- Laboratoire de Chimie Organique et des Substances Naturelles, Université Félix Houphouët-Boigny, 22 Bp 582 Abidjan 22, AbidjanCote d‘Ivoire
| | - Jinshan Jin
- Departments of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Phang C. Tai
- Departments of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Binghe Wang
- Departments of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
12
|
Kloosterboer A, Dermer HI, Galor A. Diagnostic tests in dry eye. EXPERT REVIEW OF OPHTHALMOLOGY 2019; 14:237-246. [PMID: 31649745 PMCID: PMC6812581 DOI: 10.1080/17469899.2019.1657833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Dry Eye (DE) is a multifactorial condition with a variable clinical presentation. This highly prevalent disease has multiple symptoms and signs that often do not correlate with one another. As such, the diagnosis of DE can be challenging to make, and a systematic approach must be taken. AREAS COVERED We review the different methods commonly utilized to evaluate a patient complaining of DE symptoms. Included in this review are clinical examination techniques, point of care tests, and imaging techniques. EXPERT OPINION DE is an umbrella term that encompasses different etiologies and pathophysiological mechanisms. The current definition recognizes tear instability, high osmolarity, inflammation, and neuro-sensory dysfunction as causative entities. The approach to DE begins with a systematic assessment of symptoms and signs, evaluating for both nociceptive and neuropathic sources of symptoms. Future research is needed to develop tests that assess neurosensory status in DE and couple point of care tests with therapeutic algorithms.
Collapse
Affiliation(s)
- Amy Kloosterboer
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | | | - Anat Galor
- Miami Veterans Administration Medical Center, Miami, Florida, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| |
Collapse
|
13
|
Brandhofer T, Gini A, Stockerl S, Piekarski DG, García Mancheño O. Direct C–H Bond Imidation with Benzoyl Peroxide as a Mild Oxidant and a Reagent. J Org Chem 2019; 84:12992-13002. [DOI: 10.1021/acs.joc.9b01765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tobias Brandhofer
- Institute of Organic Chemistry, University of Münster, 48149 Münster, Germany
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Gini
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sebastian Stockerl
- Institute of Organic Chemistry, University of Münster, 48149 Münster, Germany
| | | | | |
Collapse
|
14
|
Brandhofer T, Özdemir A, Gini A, Mancheño OG. Double Cu‐Catalyzed Direct Csp3−H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. Chemistry 2019; 25:4077-4086. [DOI: 10.1002/chem.201806288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Tobias Brandhofer
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Aysegül Özdemir
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Andrea Gini
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Olga García Mancheño
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
15
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
16
|
Cui P, Li X, Zhu M, Wang B, Liu J, Chen H. Design, synthesis and antibacterial activities of thiouracil derivatives containing acyl thiourea as SecA inhibitors. Bioorg Med Chem Lett 2017; 27:2234-2237. [DOI: 10.1016/j.bmcl.2016.11.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/28/2022]
|
17
|
Cui P, Li X, Zhu M, Wang B, Liu J, Chen H. Design, synthesis and antimicrobial activities of thiouracil derivatives containing triazolo-thiadiazole as SecA inhibitors. Eur J Med Chem 2016; 127:159-165. [PMID: 28039774 DOI: 10.1016/j.ejmech.2016.12.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 11/28/2022]
Abstract
A series of novel thiouracil derivatives containing a triazolo-thiadiazole moiety (7a-7l) have been synthesized by structural modifications on a lead SecA inhibitor, 2. All the compounds have been evaluated for their antibacterial activities against Bacillus amyloliquefaciens, Staphylococcus aureus, and Bacillus subtilis. Compounds 7d and 7g were also tested for their inhibitory activities against SecA ATPase due to their promising antimicrobial activities. The inhibitory activity of compound 7d was found to be higher than that of 2. Molecular docking work suggests that compound 7d might bind at a pocket close to the ATPase ATP-binding domain.
Collapse
Affiliation(s)
- Penglei Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Jing Liu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
18
|
Jin J, Hsieh YH, Cui J, Damera K, Dai C, Chaudhary AS, Zhang H, Yang H, Cao N, Jiang C, Vaara M, Wang B, Tai PC. Using Chemical Probes to Assess the Feasibility of Targeting SecA for Developing Antimicrobial Agents against Gram-Negative Bacteria. ChemMedChem 2016; 11:2511-2521. [PMID: 27753464 PMCID: PMC5189635 DOI: 10.1002/cmdc.201600421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Indexed: 11/07/2022]
Abstract
With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram-negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram-positive and Gram-negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram-negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor-resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA-azi-9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram-negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Krishna Damera
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chaofeng Dai
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Arpana S. Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Nannan Cao
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Martti Vaara
- Division of Clinical Microbiology, Helsinki University Hospital, FI-00029 HUSLAB, Helsinki, Finland, and Northern Antibiotics Ltd, FI-00720, Helsinki, Finland
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
19
|
Martins Estevão B, Cucinotta F, Hioka N, Cossi M, Argeri M, Paul G, Marchese L, Gianotti E. Rose Bengal incorporated in mesostructured silica nanoparticles: structural characterization, theoretical modeling and singlet oxygen delivery. Phys Chem Chem Phys 2016; 17:26804-12. [PMID: 26396040 DOI: 10.1039/c5cp03564c] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rose Bengal (RB), a xanthene dye, incorporated into mesostructured silica nanoparticles (MSNs) exhibits efficient singlet oxygen ((1)O2) generation when illuminated with 540 nm green light which is particularly promising for PDT applications. Several systems with different RB loadings were synthesized and fully characterized by means of spectroscopic techniques in combination with a computational study, to optimize the amount of RB in order to avoid the formation of aggregates that is detrimental for a high (1)O2 delivery.
Collapse
Affiliation(s)
- B Martins Estevão
- Department of Science and Technological Innovation and Nano-SiSTeMI Centre, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
There is a consensus in the medical profession of the pressing need for novel antimicrobial agents due to issues related to drug resistance. In practice, solutions to this problem to a large degree lie with the identification of new and vital targets in bacteria and subsequently designing their inhibitors. We consider SecA a very promising antimicrobial target. In this review, we compile and analyze information available on SecA to show that inhibition of SecA has a multitude of consequences. Furthermore, we discuss issues critical to the design and evaluation of SecA inhibitors.
Collapse
|
22
|
Shen R, Chen Y, Li Z, Qi H, Wang Y. Synthesis and biological evaluation of disubstituted amidoxanthones as potential telomeric G-quadruplex DNA-binding and apoptosis-inducing agents. Bioorg Med Chem 2016; 24:619-26. [DOI: 10.1016/j.bmc.2015.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022]
|
23
|
Cui J, Jin J, Chaudhary AS, Hsieh YH, Zhang H, Dai C, Damera K, Chen W, Tai PC, Wang B. Design, Synthesis and Evaluation of Triazole-Pyrimidine Analogues as SecA Inhibitors. ChemMedChem 2016; 11:43-56. [PMID: 26607404 PMCID: PMC4778717 DOI: 10.1002/cmdc.201500447] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 01/15/2023]
Abstract
SecA, a key component of the bacterial Sec-dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. Through a combination of virtual screening and experimental exploration of the surrounding chemical space, we identified a hit bistriazole SecA inhibitor, SCA-21, and studied a series of analogues by systematic dissections of the core scaffold. Evaluation of these analogues allowed us to establish an initial structure-activity relationship in SecA inhibition. The best compounds in this group are potent inhibitors of SecA-dependent protein-conducting channel activity and protein translocation activity at low- to sub-micromolar concentrations. They also have minimal inhibitory concentration (MIC) values against various strains of bacteria that correlate well with the SecA and protein translocation inhibition data. These compounds are effective against methicillin-resistant Staphylococcus aureus strains with various levels of efflux pump activity, indicating the capacity of SecA inhibitors to null the effect of multidrug resistance. Results from studies of drug-affinity-responsive target stability and protein pull-down assays are consistent with SecA as a target for these compounds.
Collapse
Affiliation(s)
- Jianmei Cui
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Krishna Damera
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Weixuan Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
24
|
Jin J, Cui J, Chaudhary AS, Hsieh YH, Damera K, Zhang H, Yang H, Wang B, Tai PC. Evaluation of small molecule SecA inhibitors against methicillin-resistant Staphylococcus aureus. Bioorg Med Chem 2015; 23:7061-8. [PMID: 26432604 PMCID: PMC4661110 DOI: 10.1016/j.bmc.2015.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
Due to the emergence and rapid spread of drug resistance in bacteria, there is an urgent need for the development of novel antimicrobials. SecA, a key component of the general bacterial secretion system required for viability and virulence, is an attractive antimicrobial target. Earlier we reported that systematical dissection of a SecA inhibitor, Rose Bengal (RB), led to the development of novel small molecule SecA inhibitors active against Escherichia coli and Bacillus subtilis. In this study, two potent RB analogs were further evaluated for activities against methicillin-resistant Staphylococcus aureus (MRSA) strains and for their mechanism of actions. These analogs showed inhibition on the ATPase activities of S. aureus SecA1 (SaSecA1) and SecA2 (SaSecA2), and inhibition of SaSecA1-dependent protein-conducting channel. Moreover, these inhibitors reduce the secretion of three toxins from S. aureus and exert potent bacteriostatic effects against three MRSA strains. Our best inhibitor SCA-50 showed potent concentration-dependent bactericidal activity against MRSA Mu50 strain and very importantly, 2-60 fold more potent inhibitory effect on MRSA Mu50 than all the commonly used antibiotics including vancomycin, which is considered the last resort option in treating MRSA-related infections. Protein pull down experiments further confirmed SaSecA1 as a target. Deletion or overexpression of NorA and MepA efflux pumps had minimal effect on the antimicrobial activities against S. aureus, indicating that the effects of SecA inhibitors were not affected by the presence of these efflux pumps. Our studies show that these small molecule analogs target SecA functions, have potent antimicrobial activities, reduce the secretion of toxins, and have the ability to overcome the effect efflux pumps, which are responsible for multi-drug resistance. Thus, targeting SecA is an attractive antimicrobial strategy against MRSA.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Jianmei Cui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Arpana Sagwal Chaudhary
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Krishna Damera
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
25
|
Hsieh YH, Zou J, Jin JS, Yang H, Chen Y, Jiang C, Yang J, Tai PC. Monitoring channel activities of proteoliposomes with SecA and Cx26 gap junction in single oocytes. Anal Biochem 2015; 480:58-66. [PMID: 25862083 DOI: 10.1016/j.ab.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Establishing recordable channels in membranes of oocytes formed by expressing exogenous complementary DNA (cDNA) or messenger RNA (mRNA) has contributed greatly to understanding the molecular mechanisms of channel functions. Here, we report the extension of this semi-physiological system for monitoring the channel activity of preassembled membrane proteins in single cell oocytes by injecting reconstituted proteoliposomes along with substrates or regulatory molecules. We build on the observation that SecA from various bacteria forms active protein-conducting channels with injection of proteoliposomes, protein precursors, and ATP-Mg(2+). Such activity was enhanced by reconstituted SecYEG-SecDF•YajC liposome complexes that could be monitored easily and efficiently, providing correlation of in vitro and intact cell functionality. In addition, inserting reconstituted gap junction Cx26 liposomes into the oocytes allowed the demonstration of intracellular/extracellular Ca(2+)-regulated hemi-channel activities. The channel activities can be detected rapidly after injection, can be monitored for various effectors, and are dependent on specific exogenous lipid compositions. This simple and effective functional system with low endogenous channel activity should have broad applications for monitoring the specific channel activities of complex interactions of purified membrane proteins with their effectors and regulatory molecules.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Juan Zou
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Jin-Shan Jin
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Hsiuchin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Yanyi Chen
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Yang
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
26
|
Rho JR, Subramaniam G, Choi H, Kim EH, Ng SP, Yoganathan K, Ng S, Buss AD, Butler MS, Gerwick WH. Gargantulide A, a complex 52-membered macrolactone showing antibacterial activity from Streptomyces sp. Org Lett 2015; 17:1377-80. [PMID: 25723256 DOI: 10.1021/acs.orglett.5b00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gargantulide A (1), an extremely complex 52-membered macrolactone, was isolated from Streptomyces sp. A42983 and displayed moderate activity against MRSA. The planar structure of 1 was determined using 2D NMR, and its stereochemistry was partially established on the basis of NOESY correlations, J-based configuration analysis, and Kishi's universal NMR database.
Collapse
Affiliation(s)
- Jung-Rae Rho
- †Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States
| | - Gurusamy Subramaniam
- ‡MerLion Pharmaceuticals, 41 Science Park Road, #04-03B the Gemini, Singapore Science Park II, Singapore 117610, Singapore
| | - Hyukjae Choi
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States
| | - Eun-Hee Kim
- ∥Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk 363-883, Korea
| | - Sok Peng Ng
- ‡MerLion Pharmaceuticals, 41 Science Park Road, #04-03B the Gemini, Singapore Science Park II, Singapore 117610, Singapore
| | - K Yoganathan
- ‡MerLion Pharmaceuticals, 41 Science Park Road, #04-03B the Gemini, Singapore Science Park II, Singapore 117610, Singapore
| | - Siewbee Ng
- ‡MerLion Pharmaceuticals, 41 Science Park Road, #04-03B the Gemini, Singapore Science Park II, Singapore 117610, Singapore
| | - Antony D Buss
- ‡MerLion Pharmaceuticals, 41 Science Park Road, #04-03B the Gemini, Singapore Science Park II, Singapore 117610, Singapore
| | - Mark S Butler
- ‡MerLion Pharmaceuticals, 41 Science Park Road, #04-03B the Gemini, Singapore Science Park II, Singapore 117610, Singapore
| | - William H Gerwick
- †Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States.,§Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
27
|
Chaudhary AS, Jin J, Chen W, Tai PC, Wang B. Design, syntheses and evaluation of 4-oxo-5-cyano thiouracils as SecA inhibitors. Bioorg Med Chem 2014; 23:105-17. [PMID: 25498235 DOI: 10.1016/j.bmc.2014.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 11/02/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Abstract
Protein translocation is essential for bacterial survival and the most important translocation mechanism is the secretion (Sec) pathway in which SecA is a central core driving force. Thus targeting SecA is a promising strategy for developing novel antibacterial therapeutics. Herein, we report the syntheses and evaluation of a series of nearly 60 4-oxo-5-cyano thiouracil derivatives based upon our previously reported core pyrimidine structure. Introduction of polar group such as -N3 and linker groups such as -CH2-O- enhanced the potency several fold. Apart from being potential antibacterial agents, these inhibitors can be indispensable tools for biologists to probe the mechanism of protein translocation via the SecA machinery in bacteria.
Collapse
Affiliation(s)
- Arpana S Chaudhary
- College of Arts and Sciences, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Weixuan Chen
- College of Arts and Sciences, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Binghe Wang
- College of Arts and Sciences, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
28
|
Hsieh YH, Huang YJ, Jin JS, Yu L, Yang H, Jiang C, Wang B, Tai PC. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities. Biochem Biophys Res Commun 2014; 454:308-12. [PMID: 25450394 DOI: 10.1016/j.bbrc.2014.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Ying-Ju Huang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Jin-Shan Jin
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Liyan Yu
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Hsiuchin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Chun Jiang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Binghe Wang
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
29
|
Rao C V S, De Waelheyns E, Economou A, Anné J. Antibiotic targeting of the bacterial secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1762-83. [PMID: 24534745 DOI: 10.1016/j.bbamcr.2014.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 02/06/2023]
Abstract
Finding new, effective antibiotics is a challenging research area driven by novel approaches required to tackle unconventional targets. In this review we focus on the bacterial protein secretion pathway as a target for eliminating or disarming pathogens. We discuss the latest developments in targeting the Sec-pathway for novel antibiotics focusing on two key components: SecA, the ATP-driven motor protein responsible for driving preproteins across the cytoplasmic membrane and the Type I signal peptidase that is responsible for the removal of the signal peptide allowing the release of the mature protein from the membrane. We take a bird's-eye view of other potential targets in the Sec-pathway as well as other Sec-dependent or Sec-independent protein secretion pathways as targets for the development of novel antibiotics. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Smitha Rao C V
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| | - Evelien De Waelheyns
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium; Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, P.O. Box 1385, GR-711 10 Iraklio, Crete, Greece; Department of Biology, University of Crete, P.O. Box 1385, GR-71110 Iraklio, Crete, Greece.
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| |
Collapse
|