1
|
Singh K, Kaur A, Goyal B, Goyal D. Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer's Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress. ACS Chem Neurosci 2024; 15:2545-2564. [PMID: 38979773 DOI: 10.1021/acschemneuro.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.
Collapse
Affiliation(s)
- Kamaljot Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004 Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
2
|
Prachayasittikul V, Pingaew R, Prachayasittikul S, Prachayasittikul V. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
4
|
Importance of Biometals as Targets in Medicinal Chemistry: An Overview about the Role of Zinc (II) Chelating Agents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zinc (II) is an important biometal in human physiology. Moreover, in the last two decades, it was deeply studied for its involvement in several pathological states. In particular, the regulation of its concentration in synaptic clefts can be fundamental for the treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD). Zinc (II) is also a constituent of metalloenzymes (i.e., matrix metalloproteinases, MMPs, and carbonic anhydrases, CAs) with catalytic function; therefore, it can be an important target for the inhibition of these proteins, frequently involved in cancer onset. This review is focused on the significance of zinc (II) chelating agents in past and future medicinal chemistry research, and on the importance of selectivity in order to revamp the possibility of their use in therapy, often hindered by possible side effects.
Collapse
|
5
|
Litecká M, Hreusová M, Kašpárková J, Gyepes R, Smolková R, Obuch J, David T, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XIV: High selective antiproliferative activity of tris(5-chloro-8-quinolinolato)gallium(III) complex against human cancer cell lines. Bioorg Med Chem Lett 2020; 30:127206. [PMID: 32354569 DOI: 10.1016/j.bmcl.2020.127206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 01/17/2023]
Abstract
Four gallium(III) complexes, [Ga(ClQ)3]⋅MeOH (1 - MeOH), [Ga(ClQ)3] (1), [Ga(BrQ)3] (2), [Ga(dIQ)3] (3) and [Ga(CQ)3] (4), were prepared (H-ClQ = 5-chloro-8-quinolinol, H-BrQ = 7-bromo-8-quinolinol, H-dIQ = 5,7-diiodo-8-quinolinol, H-CQ = 5-chloro-7-iodo-8-quinolinol) and characterised by elemental analysis, IR and NMR spectroscopy. Single crystal structure analysis of 1 - MeOH confirmed that the complex has a molecular structure with gallium(III) metal ion coordinated in mer-fashion by N- and O-donor atoms of three ClQ ligands. Stability of all complexes in DMSO was proved by 1H NMR spectroscopy. The in vitro antiproliferative activity of 1 was evaluated against the A2780, MBA-MB-231 and HCT116 cell lines. Complex 1 displays higher antiproliferative activity (IC50 values in the range 2.1-6 μm) compared to the ClQ ligand and cisplatin; and a significant selective antiproliferative potency (IC50 = 136 μm, for normal MRC5pd30 cell line). Radical scavenging experiments revealed that complex 1 exhibits the highest antioxidant activity of the prepared complexes as well as the ligands.
Collapse
Affiliation(s)
- Miroslava Litecká
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia
| | - Monika Hreusová
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jana Kašpárková
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 40 Prague 2, Czech Republic
| | - Romana Smolková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, Ulica 17. novembra 1, 081 16 Prešov, Slovakia
| | - Jakub Obuch
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 40 Prague 2, Czech Republic
| | - Tomáš David
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Ivan Potočňák
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia.
| |
Collapse
|
6
|
Meng T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. Cyclometalated Ir(III)-8-oxychinolin complexes acting as red-colored probes for specific mitochondrial imaging and anticancer drugs. Eur J Med Chem 2020; 192:112192. [PMID: 32146374 DOI: 10.1016/j.ejmech.2020.112192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
A new class of luminescent IrIII antitumor agents, namely, [Ir(CP1)(PY1)2] (Ir-1), [Ir(CP1)(PY2)2] (Ir-2), [Ir(CP1)(PY4)2] (Ir-3), [Ir(CP2)(PY1)2] (Ir-4), [Ir(CP2)(PY4)2] (Ir-5), [Ir(CP3)(PY1)2]⋅CH3OH (Ir-6), [Ir(CP4)(PY4)2]⋅CH3OH (Ir-7), [Ir(CP5)(PY2)2] (Ir-8), [Ir(CP5)(PY4)2]⋅CH3OH (Ir-9), [Ir(CP6)(PY1)2] (Ir-10), [Ir(CP6)(PY2)2]⋅CH3OH (Ir-11), [Ir(CP6)(PY3)2] (Ir-12), [Ir(CP6)(PY41)2] (Ir-13), and [Ir(CP7)(PY1)2] (Ir-14), supported by 8-oxychinolin derivatives and 1-phenylpyrazole ligands was prepared. Compared with SK-OV-3/DDP and HL-7702 cells, the Ir-1-Ir-14 compounds exhibited half maximal inhibitory concentration (IC50) values within the high nanomolar range (50 nM-10.99 μM) in HeLa cells. In addition, Ir-1 and Ir-3 accumulated and stained the mitochondrial inner membrane of HeLa cells with high selectivity and exhibited a high antineoplastic activity in the entire cervical HeLa cells, with IC50 values of 1.22 ± 0.36 μM and 0.05 ± 0.04 μM, respectively. This phenomenon induced mitochondrial dysfunction, suggesting that these cyclometalated IrIII complexes can be potentially used in biomedical imaging and Ir(III)-based anticancer drugs. Furthermore, the high cytotoxicity activity of Ir-3 is correlated with the 1-phenylpyrazole (H-PY4) secondary ligands in the luminescent IrIII antitumor complex.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
7
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
8
|
Meng T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. High in vitro and in vivo antitumor activities of Ln(III) complexes with mixed 5,7-dichloro-2-methyl-8-quinolinol and 4,4'-dimethyl-2,2'-bipyridyl chelating ligands. Eur J Med Chem 2019; 169:103-110. [PMID: 30870791 DOI: 10.1016/j.ejmech.2019.02.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 01/09/2023]
Abstract
Three novel Ln(III) complexes, namely, [Pm(dmbpy)(ClQ)2NO3] (1), [Yb(dmbpy)(ClQ)2NO3] (2), and [Lu(dmbpy)(ClQ)2NO3] (3), with mixed 5,7-dichloro-2-methyl-8-quinolinol (H-ClQ) and 4,4'-dimethyl-2,2'-bipyridyl (dmbpy) chelating ligands were first synthesized. The cytotoxic activity of Ln(III) complexes 1-3, H-ClQ, and dmbpy against a panel of human normal and cancer cell lines, namely, human non-small cell lung cancer cells (NCI-H460), human cervical adenocarcinoma cancer cells, human ovarian cancer cells, and human normal hepatocyte cells, were evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The three novel Ln(III) complexes showed a high in vitro antitumor activity toward the NCI-H460 with IC50 of 1.00 ± 0.25 nM for 1, 5.13 ± 0.44 μM for 2, and 11.87 ± 0.79 μM for 3, respectively. In addition, Ln(III) complexes 1 and 2 exerted their in vitro antitumor activity/mechanism mainly via the mitochondrial death pathway and caused a G2/M phase arrest in the following order: 1 > 2. An NCI-H460 tumor xenograft mouse model was used to evaluate the Pm(III) complex 1in vivo antitumor activity. Pm(III) complex 1 showed a high in vivo antitumor activity, and the tumor growth inhibition rate (IR) was 56.0% (p < 0.05). In summary, our study on Pm(III) complex 1 revealed promising results in in vitro and in vivo antitumor activity assays.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China.
| |
Collapse
|
9
|
Qin QP, Wang SL, Tan MX, Liu YC, Meng T, Zou BQ, Liang H. Synthesis of two platinum(II) complexes with 2-methyl-8-quinolinol derivatives as ligands and study of their antitumor activities. Eur J Med Chem 2019; 161:334-342. [DOI: 10.1016/j.ejmech.2018.10.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/01/2018] [Accepted: 10/20/2018] [Indexed: 01/31/2023]
|
10
|
Qin QP, Wang ZF, Tan MX, Huang XL, Zou HH, Zou BQ, Shi BB, Zhang SH. Complexes of lanthanides(iii) with mixed 2,2′-bipyridyl and 5,7-dibromo-8-quinolinoline chelating ligands as a new class of promising anti-cancer agents. Metallomics 2019; 11:1005-1015. [DOI: 10.1039/c9mt00037b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MeOMBrQ-Ho induced HeLa cell apoptosis was mediated by inhibition of telomerase activity and dysfunction of mitochondria. Remarkably, MeOMBrQ-Ho obviously inhibited HeLa xenograft tumor growth in vivo.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Xiao-Ling Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Bi-Qun Zou
- Department of Chemistry
- Guilin Normal College
- Gulin 541001
- P. R. China
| | - Bei-Bei Shi
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| |
Collapse
|
11
|
Cacciatore I, Marinelli L, Di Stefano A, Di Marco V, Orlando G, Gabriele M, Gatta DMP, Ferrone A, Franceschelli S, Speranza L, Patruno A. Chelating and antioxidant properties of l-Dopa containing tetrapeptide for the treatment of neurodegenerative diseases. Neuropeptides 2018; 71:11-20. [PMID: 29937392 DOI: 10.1016/j.npep.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 06/17/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases share a common pathogenetic mechanism involving aggregation and deposition of misfolded proteins, oxidative stress, metal dyshomeostasis, and glutamate exicitotoxicity, which lead to progressive dysfunction of central nervous system (CNS). A potential strategy to counteract these deleterious events at neuronal level is represented by the employment of a novel class of multi-target therapeutic agents that selectively and simultaneously hit these targets In this paper, we report the metal binding and antioxidant properties of a novel metal-protein attenuating peptide, GSH-LD, a tetrapeptide obtained by linking glutathione, a well-known antioxidant tripeptide, to L-Dopa. Results demonstrated that GSH-LD possesses chelating capabilities in order to selectively target the excess of metals without interfere with metal-containing antioxidant enzymes. Moreover, antioxidant assays revealed a large contribution of GSH-LD to restore the antioxidant defences of damaged neuronal cells.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy.
| | - Lisa Marinelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Mirko Gabriele
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy; Thermo Fisher Scientific, via Morolense 5, 03013 Ferentino (Frosinone), Italy
| | - Daniela Maria Pia Gatta
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Alessio Ferrone
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Sara Franceschelli
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Lorenza Speranza
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Antonia Patruno
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| |
Collapse
|
12
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Cacciatore I, Ciulla M, Marinelli L, Eusepi P, Di Stefano A. Advances in prodrug design for Parkinson’s disease. Expert Opin Drug Discov 2018; 13:295-305. [DOI: 10.1080/17460441.2018.1429400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, University ‘G. D’Annunzio’ Chieti-Pescara, Chieti, Italy
| | - Michele Ciulla
- Department of Pharmacy, University ‘G. D’Annunzio’ Chieti-Pescara, Chieti, Italy
| | - Lisa Marinelli
- Department of Pharmacy, University ‘G. D’Annunzio’ Chieti-Pescara, Chieti, Italy
| | - Piera Eusepi
- Department of Pharmacy, University ‘G. D’Annunzio’ Chieti-Pescara, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University ‘G. D’Annunzio’ Chieti-Pescara, Chieti, Italy
| |
Collapse
|
14
|
Akhmadishina RA, Kuznetsova EV, Sadrieva GR, Sabirzyanova LR, Nizamov IS, Akhmedova GR, Nizamov ID, Abdullin TI. Glutathione salts of O,O-diorganyl dithiophosphoric acids: Synthesis and study as redox modulating and antiproliferative compounds. Peptides 2018; 99:179-188. [PMID: 28993278 DOI: 10.1016/j.peptides.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/16/2017] [Accepted: 10/05/2017] [Indexed: 01/23/2023]
Abstract
Reactions of glutathione (GSH) with O,O-diorganyl dithiophosphoric acids (DTPA) were studied to develop bioactive derivatives of GSH. Effective coupling reaction of GSH with DTPA was proposed to produce the ammonium dithiophosphates (GSH-DTPA) between the NH2 group in γ-glutamyl residue of GSH and the SH group in DTPA. A series of the GSH-DTPA salts based on O-alkyl or O-monoterpenyl substituted DTPA were synthesized. Enhanced radical scavenging activity of the GSH-DTPA over GSH was established with the use of DPPH assay and improved fluorescent assay which utilizes Co/H2O2 Fenton-like reaction. Similarly to GSH, the dithiophosphates induced both pro- and antioxidant effects in vitro attributed to different cellular availability of the compounds. Whereas extracellularly applied GSH greatly stimulated proliferation of cancer cells (PC-3, vinblastine-resistant MCF-7 cells), the GSH-DTPA exhibited antiproliferative activity, which was pronounced for the O-menthyl and O-isopinocampheolyl substituted compounds 3d and 3e (IC50≥1μM). Our results show that the GSH-DTPA are promising redox modulating and antiproliferative compounds. The approach proposed can be extended to modification and improvement of bioactivity of various natural and synthetic peptides.
Collapse
Affiliation(s)
- Rezeda A Akhmadishina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russia
| | - Elena V Kuznetsova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russia
| | - Gulnaz R Sadrieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russia
| | - Leysan R Sabirzyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russia
| | - Ilyas S Nizamov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russia.
| | - Gulnaz R Akhmedova
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russia
| | - Ilnar D Nizamov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russia.
| |
Collapse
|
15
|
Marinelli L, Fornasari E, Di Stefano A, Turkez H, Arslan ME, Eusepi P, Ciulla M, Cacciatore I. (R)-α-Lipoyl-Gly-l-Pro-l-Glu dimethyl ester as dual acting agent for the treatment of Alzheimer's disease. Neuropeptides 2017; 66:52-58. [PMID: 28993014 DOI: 10.1016/j.npep.2017.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Abstract
In this study, effects of LA-GPE (R-α-Lipoyl-Gly-l-Pro-l-Glu dimethyl ester) and GPE (Gly-L-Pro-L-Glu) on the cytotoxic action of Aβ1-42 were tested with differentiated human neuroblastoma SH-SY5Y cells as cellular Alzheimer model via measurements of mitochondrial viability (MTT assay) and lactate dehydrogenase release (LDH assay). Effects of LA-GPE and GPE on acetylcholinesterase (AChE) activity, total antioxidant capacity (TAC) and total oxidative status (TOS) levels, and neural cell apoptosis and necrosis were also determined. In addition, biological safety of these novel formulations was evaluated in human blood cells using different cytotoxicity and genotoxicity assays. Our results indicated that both compounds could block Aβ1-42 induced cell death. LA-GPE reduced Aβ-induced AChE activity and oxidative stress, suggesting it as a multifunctional compound potentially valuable for the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Lisa Marinelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, Chieti Scalo (CH), Italy
| | - Erika Fornasari
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, Chieti Scalo (CH), Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, Chieti Scalo (CH), Italy
| | - Hasan Turkez
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, Chieti Scalo (CH), Italy; Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25240 Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25240 Erzurum, Turkey
| | - Piera Eusepi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, Chieti Scalo (CH), Italy
| | - Michele Ciulla
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, Chieti Scalo (CH), Italy
| | - Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, Chieti Scalo (CH), Italy.
| |
Collapse
|
16
|
Cacciatore I, Fornasari E, Marinelli L, Eusepi P, Ciulla M, Ozdemir O, Tatar A, Turkez H, Di Stefano A. Memantine-derived drugs as potential antitumor agents for the treatment of glioblastoma. Eur J Pharm Sci 2017; 109:402-411. [DOI: 10.1016/j.ejps.2017.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022]
|
17
|
Zhang YL, Qin QP, Cao QQ, Han HH, Liu ZL, Liu YC, Liang H, Chen ZF. Synthesis, crystal structure, cytotoxicity and action mechanism of a Rh(iii) complex with 8-hydroxy-2-methylquinoline as a ligand. MEDCHEMCOMM 2017; 8:184-190. [PMID: 30108704 PMCID: PMC6072358 DOI: 10.1039/c6md00462h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/15/2016] [Indexed: 11/21/2022]
Abstract
A rhodium(iii) complex, [Rh(MQ)(DMSO)2Cl2] (1), with 8-hydroxy-2-methylquinoline as the ligand was synthesized and characterized. Complex 1 exhibited cytotoxicity against BEL-7404, Hep-G2, NCI-H460, T-24, and A549 cell lines with IC50 values in the micromolar range (6.52-17.86 μM). Various experiments on the Hep-G2 cells showed that complex 1 caused cell cycle arrest at the S phase, downregulation of cdc25 A, cyclin A, cyclin B and CDK2, and upregulation of p21, p27 and p53. Furthermore, cytotoxicity mechanism studies suggested that complex 1-induced apoptosis was achieved via disruption of the mitochondrial function, which led to a significant loss of the mitochondrial membrane potential, an increase in the cellular levels of reactive oxygen species, cytochrome c, and apaf-1, and a fluctuation of the intracellular Ca2+ concentration. Taken altogether, complex 1 can trigger cancer cell death by inducing apoptosis through a mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Yun-Liang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , PR China . ; ; Tel: +86 773 2120958
- Department of Pharmacy , Shaoyang University , Shaoyang , Hunan 422000 , People's Republic of China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , PR China . ; ; Tel: +86 773 2120958
| | - Qian-Qian Cao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , PR China . ; ; Tel: +86 773 2120958
| | - Hong-Hua Han
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , PR China . ; ; Tel: +86 773 2120958
| | - Zhu-Ling Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , PR China . ; ; Tel: +86 773 2120958
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , PR China . ; ; Tel: +86 773 2120958
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , PR China . ; ; Tel: +86 773 2120958
| | - Zhen-Feng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , PR China . ; ; Tel: +86 773 2120958
| |
Collapse
|
18
|
Santos MA, Chand K, Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Genovese S, Fiorito S, Taddeo VA, Epifano F, Paciotti R, Coletti C, Franceschelli S, Speranza L, Ferrone A, Felaco M, Patruno A. Effects of Geranyloxycinnamic Acids on COX-2 and i
NOS Functionalities in LPS-Stimulated U937 Mononuclear Cells. ChemistrySelect 2016. [DOI: 10.1002/slct.201601091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Salvatore Genovese
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Serena Fiorito
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Vito Alessandro Taddeo
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Francesco Epifano
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Roberto Paciotti
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Cecilia Coletti
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Sara Franceschelli
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Lorenza Speranza
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Alessio Ferrone
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Mario Felaco
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| | - Antonia Patruno
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Scalo (CH) Italy
| |
Collapse
|
20
|
8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur J Med Chem 2016; 120:252-74. [DOI: 10.1016/j.ejmech.2016.05.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023]
|
21
|
Arena E, Cacciatore I, Cerasa LS, Turkez H, Pittalà V, Pasquinucci L, Marrazzo A, Parenti C, Di Stefano A, Prezzavento O. New bifunctional antioxidant/σ1 agonist ligands: Preliminary chemico-physical and biological evaluation. Bioorg Med Chem 2016; 24:3149-56. [PMID: 27262426 DOI: 10.1016/j.bmc.2016.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 01/13/2023]
Abstract
We previously reported bifunctional sigma-1 (σ1) ligands endowed with antioxidant activity (1 and 2). In the present paper, pure enantiomers (R)-1 and (R)-2 along with the corresponding p-methoxy (6, 11), p-fluoro derivatives (7, 12) were synthesized. σ1 and σ2 affinities, antioxidant properties, and chemico-physical profiles were evaluated. Para derivatives, while maintaining strong σ1 affinity, displayed improved σ1 selectivity compared to the parent compounds 1 and 2. In vivo evaluation of compounds 1, 2, (R)-1, 7, and 12 showed σ1 agonist pharmacological profile. Chemico-physical studies revealed that amides 2, 11 and 12 were more stable than corresponding esters 1, 6 and 7 under our experimental conditions. Antioxidant properties were exhibited by fluoro derivatives 7 and 12 being able to increase total antioxidant capacity (TAC). Our results underline that p-substituents have an important role on σ1 selectivity, TAC, chemical and enzymatic stabilities. In particular, our data suggest that new very selective compounds 7 and 12 could be promising tools to investigate the disorders in which σ1 receptor dysfunction and oxidative stress are contemporarily involved.
Collapse
Affiliation(s)
- Emanuela Arena
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Laura S Cerasa
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Hasan Turkez
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy; Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
22
|
Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer's Disease. Int J Mol Sci 2016; 17:ijms17071035. [PMID: 27376271 PMCID: PMC4964411 DOI: 10.3390/ijms17071035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL4-9) that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S)-naproxen and (R)-flurbiprofen, with (R)-α-lipoic acid (LA) through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R)-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA)-stimulated U937 cells (lymphoblast lung from human) and Aβ(25-35)-treated THP-1 cells (leukemic monocytes). Furthermore, AL7 also modulated the expression of COX-2, IL-1β and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD.
Collapse
|
23
|
Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 2016; 13:1121-31. [PMID: 27073977 DOI: 10.1080/17425247.2016.1178237] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The failure of many molecules as CNS bioactive compounds is due to many restrictions: poor water solubility, intestinal absorption, in vivo stability, bioavailability, therapeutic effectiveness, side effects, plasma fluctuations, and difficulty crossing physiological barriers, like the brain blood barrier (BBB), to deliver the drug directly to the site of action. AREA COVERED Nanotechnology-based approaches with the employment of liposomes, micelles, dendrimers, and solid lipid nanoparticles (SLN) as drug delivery systems, are used to overcome the above reported limitations. Here, we focus on the delivery of drugs based on SLN formulation to treat neurodegenerative diseases. Notably, SLN have the ability to protect drugs from chemical and enzymatic degradation, direct the active compound towards the target site with a substantial reduction of toxicity for the adjacent tissues, and pass physiological barriers increasing bioavailability without resorting to high dosage forms. EXPERT OPINION We believe that SLN could represent a suitable tool to pass the BBB and permit drugs to reach damaged areas of the CNS in patients affected by neurodegenerative pathologies, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Ivana Cacciatore
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| | - Michele Ciulla
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| | - Erika Fornasari
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| | - Lisa Marinelli
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| | - Antonio Di Stefano
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| |
Collapse
|
24
|
Development of glycine-α-methyl-proline-containing tripeptides with neuroprotective properties. Eur J Med Chem 2016; 108:553-563. [DOI: 10.1016/j.ejmech.2015.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 11/21/2022]
|
25
|
Li Y, Mei L, Qiang J, Zee CS, Li X, Liu J. Neurotoxicity of acrylonitrile evaluated by manganese enhanced magnetic resonance imaging. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Solid lipid nanoparticles loaded with lipoyl–memantine codrug: Preparation and characterization. Int J Pharm 2015; 485:183-91. [DOI: 10.1016/j.ijpharm.2015.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/21/2022]
|
27
|
Carvacrol codrugs: a new approach in the antimicrobial plan. PLoS One 2015; 10:e0120937. [PMID: 25859852 PMCID: PMC4393269 DOI: 10.1371/journal.pone.0120937] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/09/2015] [Indexed: 01/10/2023] Open
Abstract
Objective The increasing prevalence of antibiotic-resistant bacterial infections led to identify alternative strategies for a novel therapeutic approach. In this study, we synthesized ten carvacrol codrugs – obtained linking the carvacrol hydroxyl group to the carboxyl moiety of sulphur-containing amino acids via an ester bond – to develop novel compounds with improved antimicrobial and antibiofilm activities and reduced toxicity respect to carvacrol alone. Method All carvacrol codrugs were screened against a representative panel of Gram positive (S. aureus and S. epidermidis), Gram negative (E. coli and P. aeruginosa) bacterial strains and C. albicans, using broth microdilution assays. Findings Results showed that carvacrol codrug 4 possesses the most notable enhancement in the anti-bacterial activity displaying MIC and MBC values equal to 2.5 mg/mL for all bacterial strains, except for P. aeruginosa ATCC 9027 (MIC and MBC values equal to 5 mg/mL and 10 mg/mL, respectively). All carvacrol codrugs 1-10 revealed good antifungal activity against C. albicans ATCC 10231. The cytotoxicity assay showed that the novel carvacrol codrugs did not produce human blood hemolysis at their MIC values except for codrugs 8 and 9. In particular, deepened experiments performed on carvacrol codrug 4 showed an interesting antimicrobial effect on the mature biofilm produced by E. coli ATCC 8739, respect to the carvacrol alone. The antimicrobial effects of carvacrol codrug 4 were also analyzed by TEM evidencing morphological modifications in S. aureus, E. coli, and C. albicans. Conclusion The current study presents an insight into the use of codrug strategy for developing carvacrol derivatives with antibacterial and antibiofilm potentials, and reduced cytotoxicity.
Collapse
|
28
|
Qin QP, Chen ZF, Qin JL, He XJ, Li YL, Liu YC, Huang KB, Liang H. Studies on antitumor mechanism of two planar platinum(II) complexes with 8-hydroxyquinoline: Synthesis, characterization, cytotoxicity, cell cycle and apoptosis. Eur J Med Chem 2015; 92:302-13. [DOI: 10.1016/j.ejmech.2014.12.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 11/27/2022]
|
29
|
Song Y, Xu H, Chen W, Zhan P, Liu X. 8-Hydroxyquinoline: a privileged structure with a broad-ranging pharmacological potential. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00284a] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An overview of the broad-ranging pharmacological applications of 8-HQ derivatives.
Collapse
Affiliation(s)
- Yu'ning Song
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
| | - Hao Xu
- Department of Breast and Thyroid Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan
- P. R. China
| | - Wenmin Chen
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
| | - Peng Zhan
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
| | - Xinyong Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
| |
Collapse
|
30
|
Patruno A, Fornasari E, Di Stefano A, Cerasa LS, Marinelli L, Baldassarre L, Sozio P, Turkez H, Franceschelli S, Ferrone A, Di Giacomo V, Speranza L, Felaco M, Cacciatore I. Synthesis of a Novel Cyclic Prodrug of S-Allyl-glutathione Able To Attenuate LPS-Induced ROS Production through the Inhibition of MAPK Pathways in U937 Cells. Mol Pharm 2014; 12:66-74. [DOI: 10.1021/mp500431r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Hasan Turkez
- Department
of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | | | | | | | | | | | | |
Collapse
|
31
|
Improvement of oxidative and metabolic parameters by cellfood administration in patients affected by neurodegenerative diseases on chelation treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:281510. [PMID: 25114898 PMCID: PMC4119708 DOI: 10.1155/2014/281510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022]
Abstract
Objective. This prospective pilot study aimed at evaluating the effects of therapy with antioxidant compounds (Cellfood, and other antioxidants) on patients affected by neurodegenerative diseases (ND), who displayed toxic metal burden and were subjected to chelation treatment with the chelating agent calcium disodium ethylenediaminetetraacetic acid (CaNa2EDTA or EDTA). Methods. Two groups of subjects were studied: (a) 39 patients affected by ND and (b) 11 subjects unaffected by ND (controls). The following blood parameters were analyzed before and after three months' treatment with chelation + Cellfood or chelation + other antioxidants: oxidative status (reactive oxygen species, ROS; total antioxidant capacity, TAC; oxidized LDL, oxLDL; glutathione), homocysteine, vitamin B12, and folate. Results. After 3-months' chelation + Cellfood administration oxLDL decreased, ROS levels were significantly lower, and TAC and glutathione levels were significantly higher than after chelation + other antioxidants treatment, both in ND patients and in controls. Moreover, homocysteine metabolism had also improved in both groups. Conclusions. Chelation + Cellfood treatment was more efficient than chelation + other antioxidants improving oxidative status and homocysteine metabolism significantly in ND patients and controls. Although limited to a small number of cases, this study showed how helpful antioxidant treatment with Cellfood was in improving the subjects' metabolic conditions.
Collapse
|