1
|
Brals J, McGuire TM, Watson AJB. A Chemoselective Polarity-Mismatched Photocatalytic C(sp 3 )-C(sp 2 ) Cross-Coupling Enabled by Synergistic Boron Activation. Angew Chem Int Ed Engl 2023; 62:e202310462. [PMID: 37622419 PMCID: PMC10952440 DOI: 10.1002/anie.202310462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
We report the development of a C(sp3 )-C(sp2 ) coupling reaction using styrene boronic acids and redox-active esters under photoredox catalysis. The reaction proceeds through an unusual polarity-mismatched radical addition mechanism that is orthogonal to established processes. Synergistic activation of the radical precursor and organoboron are critical mechanistic events. Activation of an N-hydroxyphthalimide (NHPI) ester by coordination to boron enables electron transfer, with decomposition leading to a nucleofuge rebound, activating the organoboron to radical addition. The unique mechanism enables chemoselective coupling of styrene boronic acids in the presence of other alkene radical acceptors. The scope and limitations of the reaction, and a detailed mechanistic investigation are presented.
Collapse
Affiliation(s)
- Jeremy Brals
- EaStCHEMSchool of ChemistryUniversity of St AndrewsPurdie Building, North HaughSt AndrewsKY16 9STUK
| | - Thomas M. McGuire
- AstraZenecaDarwin Building, Unit 310Cambridge Science Park, Milton RoadCambridgeCB4 0WGUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of St AndrewsPurdie Building, North HaughSt AndrewsKY16 9STUK
| |
Collapse
|
2
|
Zhou Y, Song M, Xie D, Yan S, Yu S, Xie S, Cai M, Li H, Shang L, Jiang L, Yuan C, Huang M, Li J, Xu P. Structural Dynamics-Driven Discovery of Anticancer and Antimetastatic Effects of Diltiazem and Glibenclamide Targeting Urokinase Receptor. J Med Chem 2023; 66:5415-5426. [PMID: 36854648 DOI: 10.1021/acs.jmedchem.2c01663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Diltiazem and glibenclamide are commonly used hypotensive and antidiabetic drugs. This study reports the discovery of the potential antitumor and antimetastatic effects of these two drugs using a structural dynamics-driven virtual screening targeting urokinase receptor (uPAR). Owing to uPAR's high flexibility, currently resolved crystal structures of uPAR, all in ligand-bound states, provide limited representations of its physiological conformation. To improve the accuracy of screening, we performed a long-timescale molecular dynamics simulation and obtained the representative conformations of apo-uPAR as the targets for our screening. Experimentally, we demonstrated that diltiazem and glibenclamide bound uPAR with KD values in the micromolar range. In addition, both compounds effectively suppressed tumor growth and metastasis in a uPAR-dependent manner in vitro and in vivo. This work not only provides two potent uPAR inhibitors but also reports a proof-of-concept study on the potential off-label antitumor and antimetastatic uses of diltiazem and glibenclamide.
Collapse
Affiliation(s)
- Yang Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Meiru Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Henan Academy of Sciences, Zhengzhou, Henan 450046, P. R. China
| | - Daoqing Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Shufeng Yan
- Sanming University, Sanming, Fujian 365004, P. R. China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Meiqin Cai
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Le Shang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350109, P. R. China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
3
|
Gladkov AA, Levin VV, Dilman AD. Photoredox Promoted Barbier-Type Reaction of Alkyl Iodides with N-Alkyl and N-Aryl Imines. J Org Chem 2023; 88:1260-1269. [PMID: 36608025 DOI: 10.1021/acs.joc.2c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The reaction of organozinc reagents with unactivated imines is accelerated when performed in the presence of a photocatalyst under blue light irradiation. Coordination between Lewis acidic zinc iodide and the imine is a key factor responsible for the reaction efficiency. The method can be carried out using alkyl iodides under Barbier conditions.
Collapse
Affiliation(s)
- Anton A Gladkov
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation.,Lomonosov Moscow State University, Department of Chemistry, 119991, Moscow, Leninskie Gory 1-3, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
4
|
Farag PS, AboulMagd AM, Hemdan MM, Hassaballah AI. Annulated pyrazole derivatives as a novel class of urokinase (uPA) inhibitors: Green synthesis, anticancer activity, DNA-damage evaluation, and molecular modelling study. Bioorg Chem 2022; 130:106231. [DOI: 10.1016/j.bioorg.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022]
|
5
|
Paramonova P, Bakulina O, Nabiyev A, Dar'in D, Krasavin M. Castagnoli‐Cushman Reaction of 3‐Aryl Glutaric Acids: A Convenient, Diastereoselective Reaction for 6‐Oxo‐2,4‐diarylpiperidine‐3‐carboxylic Acid Scaffold. ChemistrySelect 2022. [DOI: 10.1002/slct.202104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Polina Paramonova
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
| | - Olga Bakulina
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
| | - Alem Nabiyev
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
| | - Dmitry Dar'in
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
| | - Mikhail Krasavin
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
- Immanuel Kant Baltic Federal University Kaliningrad 236041 Russia
| |
Collapse
|
6
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Labrecque CL, Hilton CN, Airas J, Blake A, Rubenstein KJ, Parish CA, Pollock JA. Identification of Phenazine-Based MEMO1 Small-Molecule Inhibitors: Virtual Screening, Fluorescence Polarization Validation, and Inhibition of Breast Cancer Migration. ChemMedChem 2021; 16:1163-1171. [PMID: 33332774 DOI: 10.1002/cmdc.202000797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Indexed: 11/10/2022]
Abstract
Phosphorylation-dependent protein-protein interactions play a significant role in biological signaling pathways; therefore, small molecules that are capable of influencing these interactions can be valuable research tools and have potential as pharmaceutical agents. MEMO1 (mediator of ErbB2-cell driven motility) is a phosphotyrosine-binding protein that interacts with a variety of protein partners and has been found to be upregulated in breast cancer patients. Herein, we report the first small-molecule inhibitors of MEMO1 interactions identified through a virtual screening platform and validated in a competitive fluorescence polarization assay. Initial structure-activity relationships have been investigated for these phenazine-core inhibitors and the binding sites have been postulated using molecular dynamics simulations. The most potent biochemical inhibitor is capable of disrupting the large protein interface with a KI of 2.7 μm. In addition, the most promising phenazine core compounds slow the migration of breast cancer cell lines in a scratch assay.
Collapse
Affiliation(s)
- Courtney L Labrecque
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Cassidy N Hilton
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Justin Airas
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Alexis Blake
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Kristen J Rubenstein
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Carol A Parish
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Julie A Pollock
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| |
Collapse
|
8
|
Bum-Erdene K, Liu D, Xu D, Ghozayel MK, Meroueh SO. Design and Synthesis of Fragment Derivatives with a Unique Inhibition Mechanism of the uPAR·uPA Interaction. ACS Med Chem Lett 2021; 12:60-66. [PMID: 33488965 DOI: 10.1021/acsmedchemlett.0c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is substantial interest in the development of small molecules that inhibit the tight and highly challenging protein-protein interaction between the glycophosphatidylinositol (GPI)-anchored cell surface receptor uPAR and the serine protease uPA. While preparing derivatives of a fragment-like compound that previously emerged from a computational screen, we identified compound 5 (IPR-3242), which inhibited binding of uPA to uPAR with submicromolar IC50s. The high inhibition potency prompted us to carry out studies to rule out potential aggregation, lack of stability, reactivity, and nonspecific inhibition. We designed and prepared 16 derivatives to further explore the role of each substituent. Interestingly, the compounds only partially inhibited binding of a fluorescently labeled α-helical peptide that binds to uPAR at the uPAR·uPA interface. Collectively, the results suggest that the compounds bind to uPAR outside of the uPAR·uPA interface, trapping the receptor into a conformation that is not able to bind to uPA. Additional studies will have to be carried out to determine whether this unique inhibition mechanism can occur at the cell surface.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Mona K. Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Samy O. Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
9
|
Lin C, Arancillo M, Whisenant J, Burgess K. Unconventional Secondary Structure Mimics: Ladder‐Rungs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chen‐Ming Lin
- Department of Chemistry Texas A&M University Box 30012 College Station TX 77842 USA
| | - Maritess Arancillo
- Department of Chemistry Texas A&M University Box 30012 College Station TX 77842 USA
| | - Jonathan Whisenant
- Department of Chemistry Texas A&M University Box 30012 College Station TX 77842 USA
| | - Kevin Burgess
- Department of Chemistry Texas A&M University Box 30012 College Station TX 77842 USA
| |
Collapse
|
10
|
Lin CM, Arancillo M, Whisenant J, Burgess K. Unconventional Secondary Structure Mimics: Ladder-Rungs. Angew Chem Int Ed Engl 2020; 59:9398-9402. [PMID: 32176815 DOI: 10.1002/anie.202002639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Indexed: 01/31/2023]
Abstract
Secondary structures tend to be recognizable because they have repeating structural motifs, but mimicry of these does not have to follow such well-defined patterns. Bioinformatics studies to match side-chain orientations of a novel hydantoin triazole chemotype (1) to protein-protein interfaces revealed it tends to align well across parallel and antiparallel sheets, like rungs on a ladder. One set of these overlays was observed for the protein-protein interaction uPA⋅uPAR. Consequently, chemotype 1 was made with appropriate side-chains to mimic uPA at this interface. Biophysical assays indicate these compounds did in fact bind uPAR, and elicit cellular responses that affected invasion, migration, and wound healing.
Collapse
Affiliation(s)
- Chen-Ming Lin
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, 77842, USA
| | - Maritess Arancillo
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, 77842, USA
| | - Jonathan Whisenant
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, 77842, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, 77842, USA
| |
Collapse
|
11
|
Lin H, Xu L, Yu S, Hong W, Huang M, Xu P. Therapeutics targeting the fibrinolytic system. Exp Mol Med 2020; 52:367-379. [PMID: 32152451 PMCID: PMC7156416 DOI: 10.1038/s12276-020-0397-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/08/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
Abstract
The function of the fibrinolytic system was first identified to dissolve fibrin to maintain vascular patency. Connections between the fibrinolytic system and many other physiological and pathological processes have been well established. Dysregulation of the fibrinolytic system is closely associated with multiple pathological conditions, including thrombosis, inflammation, cancer progression, and neuropathies. Thus, molecules in the fibrinolytic system are potent therapeutic and diagnostic targets. This review summarizes the currently used agents targeting this system and the development of novel therapeutic strategies in experimental studies. Future directions for the development of modulators of the fibrinolytic system are also discussed. The fibrinolytic system was originally identified to dissolve blood clots, and is shown to have important roles in other pathological processes, including cancer progression, inflammation, and thrombosis. Molecules or therapeutics targeting fibrinolytic system have been successfully used in the clinical treatments of cancer and thrombotic diseases. The clinical studies and experimental models targeting fibrinolytic system are reviewed by Haili Lin at Sanming First Hosipital, Mingdong Huang at Fuzhou University in China, and Peng Xu at A*STAR in Singapore to demonstrate fibrinolytic system as novel therapeutic targets. As an example, the inhibition of fibrinolytic system protein can be used to suppress cancer prolifieration and metastasis. This review also discusses the potential therapeutic effects of inhibitiors of fibrinolytic system on inflammatory disorders.
Collapse
Affiliation(s)
- Haili Lin
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Luning Xu
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China.
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| |
Collapse
|
12
|
Bum-Erdene K, Zhou D, Gonzalez-Gutierrez G, Ghozayel MK, Si Y, Xu D, Shannon HE, Bailey BJ, Corson TW, Pollok KE, Wells CD, Meroueh SO. Small-Molecule Covalent Modification of Conserved Cysteine Leads to Allosteric Inhibition of the TEAD⋅Yap Protein-Protein Interaction. Cell Chem Biol 2018; 26:378-389.e13. [PMID: 30581134 DOI: 10.1016/j.chembiol.2018.11.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/27/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023]
Abstract
The Hippo pathway coordinates extracellular signals onto the control of tissue homeostasis and organ size. Hippo signaling primarily regulates the ability of Yap1 to bind and co-activate TEA domain (TEAD) transcription factors. Yap1 tightly binds to TEAD4 via a large flat interface, making the development of small-molecule orthosteric inhibitors highly challenging. Here, we report small-molecule TEAD⋅Yap inhibitors that rapidly and selectively form a covalent bond with a conserved cysteine located within the unique deep hydrophobic palmitate-binding pocket of TEADs. Inhibition of TEAD4 binding to Yap1 by these compounds was irreversible and occurred on a longer time scale. In mammalian cells, the compounds formed a covalent complex with TEAD4, inhibited its binding to Yap1, blocked its transcriptional activity, and suppressed expression of connective tissue growth factor. The compounds inhibited cell viability of patient-derived glioblastoma spheroids, making them suitable as chemical probes to explore Hippo signaling in cancer.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yubing Si
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David Xu
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN 46202, USA
| | - Harlan E Shannon
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara J Bailey
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W Corson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E Pollok
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Clark D Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
13
|
Small molecules inhibit ex vivo tumor growth in bone. Bioorg Med Chem 2018; 26:6128-6134. [PMID: 30470597 DOI: 10.1016/j.bmc.2018.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Bone is a common site of metastasis for breast, prostate, lung, kidney and other cancers. Bone metastases are incurable, and substantially reduce patient quality of life. To date, there exists no small-molecule therapeutic agent that can reduce tumor burden in bone. This is partly attributed to the lack of suitable in vitro assays that are good models of tumor growth in bone. Here, we take advantage of a novel ex vivo model of bone colonization to report a series of pyrrolopyrazolone small molecules that inhibit cancer cell invasion and ex vivo tumor growth in bone at single-digit micromolar concentration. We find that the compounds modulated the expression levels of genes associated with bone-forming osteoblasts, bone-destroying osteoclasts, cancer cell viability and metastasis. Our compounds provide chemical tools to uncover novel targets and pathways associated with bone metastasis, as well as for the development of compounds to prevent and reverse bone tumor growth in vivo.
Collapse
|
14
|
CO2-Catalyzed Efficient Dehydrogenation of Amines with Detailed Mechanistic and Kinetic Studies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03059] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Liu D, Xu D, Liu M, Knabe WE, Yuan C, Zhou D, Huang M, Meroueh SO. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction. Biochemistry 2017; 56:1768-1784. [PMID: 28186725 DOI: 10.1021/acs.biochem.6b01039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.
Collapse
Affiliation(s)
- Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - David Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Department of BioHealth Informatics, Indiana University School of Informatics and Computing , Indianapolis, Indiana 46202, United States
| | - Min Liu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science , Gulou District, Fuzhou, Fujian 3500002, China
| | - William Eric Knabe
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Cai Yuan
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science , Gulou District, Fuzhou, Fujian 3500002, China
| | - Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Mingdong Huang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science , Gulou District, Fuzhou, Fujian 3500002, China
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| |
Collapse
|
16
|
Dar'in D, Bakulina O, Nikolskaya S, Gluzdikov I, Krasavin M. The rare cis-configured trisubstituted lactam products obtained by the Castagnoli–Cushman reaction in N,N-dimethylformamide. RSC Adv 2016. [DOI: 10.1039/c6ra10249b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unlike its trans counterpart, the cis-configured scaffold derived from the Castagnoli–Cushman reaction (CCR) is scarce and has not been explored in bioactive compound design.
Collapse
Affiliation(s)
- Dmitry Dar'in
- Institute of Chemistry
- St. Petersburg State University
- Russian Federation
| | - Olga Bakulina
- Institute of Chemistry
- St. Petersburg State University
- Russian Federation
| | - Sofia Nikolskaya
- Institute of Chemistry
- St. Petersburg State University
- Russian Federation
| | - Ivan Gluzdikov
- Institute of Chemistry
- St. Petersburg State University
- Russian Federation
| | - Mikhail Krasavin
- Institute of Chemistry
- St. Petersburg State University
- Russian Federation
| |
Collapse
|
17
|
Lepikhina A, Bakulina O, Dar'in D, Krasavin M. The first solvent-free synthesis of privileged γ- and δ-lactams via the Castagnoli–Cushman reaction. RSC Adv 2016. [DOI: 10.1039/c6ra19196g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first solvent-free protocol for the atom-economical Castagnoli–Cushman reaction is reported.
Collapse
Affiliation(s)
| | - Olga Bakulina
- Saint Petersburg State University
- Saint Petersburg
- 199034 Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University
- Saint Petersburg
- 199034 Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University
- Saint Petersburg
- 199034 Russian Federation
| |
Collapse
|
18
|
Liu D, Zhou D, Wang B, Knabe WE, Meroueh SO. A new class of orthosteric uPAR·uPA small-molecule antagonists are allosteric inhibitors of the uPAR·vitronectin interaction. ACS Chem Biol 2015; 10:1521-34. [PMID: 25671694 DOI: 10.1021/cb500832q] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The urokinase receptor (uPAR) is a GPI-anchored cell surface receptor that is at the center of an intricate network of protein-protein interactions. Its immediate binding partners are the serine proteinase urokinase (uPA), and vitronectin (VTN), a component of the extracellular matrix. uPA and VTN bind at distinct sites on uPAR to promote extracellular matrix degradation and integrin signaling, respectively. Here, we report the discovery of a new class of pyrrolone small-molecule inhibitors of the tight ∼1 nM uPAR·uPA protein-protein interaction. These compounds were designed to bind to the uPA pocket on uPAR. The highest affinity compound, namely 7, displaced a fluorescently labeled α-helical peptide (AE147-FAM) with an inhibition constant Ki of 0.7 μM and inhibited the tight uPAR·uPAATF interaction with an IC50 of 18 μM. Biophysical studies with surface plasmon resonance showed that VTN binding is highly dependent on uPA. This cooperative binding was confirmed as 7, which binds at the uPAR·uPA interface, also inhibited the distal VTN·uPAR interaction. In cell culture, 7 blocked the uPAR·uPA interaction in uPAR-expressing human embryonic kidney (HEK-293) cells and impaired cell adhesion to VTN, a process that is mediated by integrins. As a result, 7 inhibited integrin signaling in MDA-MB-231 cancer cells as evidenced by a decrease in focal adhesion kinase (FAK) phosphorylation and Rac1 GTPase activation. Consistent with these results, 7 blocked breast MDA-MB-231 cancer cell invasion with IC50 values similar to those observed in ELISA and surface plasmon resonance competition studies. Explicit-solvent molecular dynamics simulations show that the cooperativity between uPA and VTN is attributed to stabilization of uPAR motion by uPA. In addition, free energy calculations revealed that uPA stabilizes the VTNSMB·uPAR interaction through more favorable electrostatics and entropy. Disruption of the uPAR·VTNSMB interaction by 7 is consistent with the cooperative binding to uPAR by uPA and VTN. Interestingly, the VTNSMB·uPAR interaction was less favorable in the VTNSMB·uPAR·7 complex suggesting potential cooperativity between 7 and VTN. Compound 7 provides an excellent starting point for the development of more potent derivatives to explore uPAR biology.
Collapse
Affiliation(s)
| | | | - Bo Wang
- Department
of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| | | | - Samy O. Meroueh
- Department
of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| |
Collapse
|
19
|
|