1
|
Steffens RC, Thalmayr S, Weidinger E, Seidl J, Folda P, Höhn M, Wagner E. Modulating efficacy and cytotoxicity of lipoamino fatty acid nucleic acid carriers using disulfide or hydrophobic spacers. NANOSCALE 2024; 16:13988-14005. [PMID: 38984864 DOI: 10.1039/d4nr01357c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Double pH-responsive xenopeptides comprising polar ionizable succinoyl tetraethylene pentamine (Stp) motifs and lipophilic ionizable lipoamino fatty acids (LAFs) were recently found to efficiently transfect mRNA and pDNA at low doses. However, potency was often accompanied with cytotoxicity at higher doses. Insertion of bioreducible disulfide building blocks (ssbb) or non-reducible hydrophobic spacers between polar and apolar ionizable domains of LAF-Stp carriers should mitigate toxicity of xenopeptides. Carriers showed stable nucleic acid complexation and endosomal pH-dependent lytic activities, both of which were abolished after reductive cleavage of ssbb-containing carriers. For pDNA, U-shaped carriers with one Stp and two LAF units or bundle carriers with two Stps and four LAFs displayed highest potency. For mRNA, best transfection was achieved with bundle carriers with one Stp and four LAFs. Both the ssbb and hydrophobic spacer containing analogs displayed improved metabolic activity, reduced membrane damage, and improved cell growth. The ssbb carriers were most beneficial regarding living cell count and low apoptosis rates. Mechanistically, inserted spacers decelerated the transfection kinetics and altered the requirement of endosomal protonation. Overall, mRNA and pDNA carriers with improved biocompatibility have been designed, with their high potency illustrated in transfection of various cell lines including low passage number colon carcinoma cells.
Collapse
Affiliation(s)
- Ricarda C Steffens
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Sophie Thalmayr
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Eric Weidinger
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Johanna Seidl
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Paul Folda
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
- CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| |
Collapse
|
2
|
Berger S, Lächelt U, Wagner E. Dynamic carriers for therapeutic RNA delivery. Proc Natl Acad Sci U S A 2024; 121:e2307799120. [PMID: 38437544 PMCID: PMC10945752 DOI: 10.1073/pnas.2307799120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.
Collapse
Affiliation(s)
- Simone Berger
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Ulrich Lächelt
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna1090, Austria
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| |
Collapse
|
3
|
Shi Q, Zhang Z, Liu S. Precision Sequence-Defined Polymers: From Sequencing to Biological Functions. Angew Chem Int Ed Engl 2024; 63:e202313370. [PMID: 37875462 DOI: 10.1002/anie.202313370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Precise sequence-defined polymers (SDPs) with uniform chain-to-chain structure including chain length, unit sequence, and end functionalities represent the pinnacle of sophistication in the realm of polymer science. For example, the absolute control over the unit sequence of SDPs allows for the bottom-up design of polymers with hierarchical microstructures and functions. Accompanied with the development of synthetic techniques towards precision SDPs, the decoding of SDP sequences and construction of advanced functions irreplaceable by other synthetic materials is of central importance. In this Minireview, we focus on recent advances in SDP sequencing techniques including tandem mass spectrometry (MS), chemically assisted primary MS, as well as other non-destructive sequencing methods such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), and nanopore sequencing. Additionally, we delve into the promising prospects of SDP functions in the area of cutting-edge biological research. Topics of exploration include gene delivery systems, the development of hybrid materials combining SDPs and nucleic acids, protein recognition and regulation, as well as the interplay between chirality and biological functions. A brief outlook towards the future directions of SDPs is also presented.
Collapse
Affiliation(s)
- Qiangqiang Shi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Hall A, Bartek J, Wagner E, Lächelt U, Moghimi SM. High-resolution bioenergetics correlates the length of continuous protonatable diaminoethane motif of four-armed oligo(ethanamino)amide transfectants to cytotoxicity. J Control Release 2023; 361:115-129. [PMID: 37532151 DOI: 10.1016/j.jconrel.2023.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Recent clinical success with Onpattro and cationic ionizable lipid nanoparticle-based mRNA vaccines has rejuvenated research in the design and engineering of broader synthetic cationic vectors for nucleic acid compaction and transfection. However, perturbation of metabolic processes and cytotoxicity are still of concern with synthetic cationic vectors. Here, through an integrated bioenergetic and biomembrane integrity probing in three different human cell lines we reveal the dynamic effect of a library of sequence-defined four-arm oligo(ethanamino)amide transfectant on cell homeostasis, and identify metabolically safe building units over wide concentration ranges. The results show differential effects of the oligo(ethanamino)amide structure of comparable molecular weight on cell energetics. The severity of polycation effect on bioenergetic crisis follows with the length of continuous protonatable diaminoethane motif in the ascending order of glutaryl-triethylene tetramine, succinyl-tetraethylene pentamine and succinyl-pentaethylene hexamine. We further identify oligomeric structures that do not induce bioenergetic crisis even at high concentrations. Finally, transfection studies with a library of polyplexes carrying a reporter gene show no correlation between transfection efficiency and cytotoxicity. These observations demonstrate the usefulness of integrated high-resolution respirometry and plasma membrane integrity probing as a highly sensitive medium-throughput screening strategy for identification and selection of safe building units for transfectant engineering.
Collapse
Affiliation(s)
- Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians Universität, Butenandstrasse 5-13, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians Universität, Butenandstrasse 5-13, 81377 Munich, Germany; Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
5
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
6
|
Wang Y, Wagner E. Non-Viral Targeted Nucleic Acid Delivery: Apply Sequences for Optimization. Pharmaceutics 2020; 12:E888. [PMID: 32961908 PMCID: PMC7559072 DOI: 10.3390/pharmaceutics12090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
In nature, genomes have been optimized by the evolution of their nucleic acid sequences. The design of peptide-like carriers as synthetic sequences provides a strategy for optimizing multifunctional targeted nucleic acid delivery in an iterative process. The optimization of sequence-defined nanocarriers differs for different nucleic acid cargos as well as their specific applications. Supramolecular self-assembly enriched the development of a virus-inspired non-viral nucleic acid delivery system. Incorporation of DNA barcodes presents a complementary approach of applying sequences for nanocarrier optimization. This strategy may greatly help to identify nucleic acid carriers that can overcome pharmacological barriers and facilitate targeted delivery in vivo. Barcode sequences enable simultaneous evaluation of multiple nucleic acid nanocarriers in a single test organism for in vivo biodistribution as well as in vivo bioactivity.
Collapse
Affiliation(s)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany;
| |
Collapse
|
7
|
Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019; 20:3613-3626. [DOI: 10.1021/acs.biomac.9b00999] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Luo T, Liang H, Jin R, Nie Y. Virus-inspired and mimetic designs in non-viral gene delivery. J Gene Med 2019; 21:e3090. [PMID: 30968996 DOI: 10.1002/jgm.3090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
Virus-inspired mimics for nucleic acid transportation have attracted much attention in the past decade, especially the derivative microenvironment stimuli-responsive designs. In the present mini-review, the smart designs of gene carriers that overcome biological barriers and realize an efficient delivery are categorized with respect to the different "triggers" provided by tumor cells, including pH, redox potentials, ATP, enzymes and reactive oxygen species. Some dual/multi-responsive gene vectors have also been introduced that show a more precise and efficient delivery in the complicated environment of human body. In addition, inspired by the special recognition mechanisms and components of viruses, improvements in the design of carriers relating to targeting/penetration properties, as well as chemical component evolution, are also addressed.
Collapse
Affiliation(s)
- Tianying Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hong Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Reinhard S, Wagner E. Sequence-Defined Cationic Lipo-Oligomers Containing Unsaturated Fatty Acids for Transfection. Methods Mol Biol 2019; 1943:1-25. [PMID: 30838606 DOI: 10.1007/978-1-4939-9092-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sequence-defined cationic lipo-oligomers containing unsaturated fatty acids are potent nucleic acid carriers that are produced by solid-phase supported synthesis. However, the trifluoroacetic acid (TFA)-mediated removal of acid-labile protecting groups and cleavage from the resin can be accompanied by side products caused by an addition of TFA to the double bonds of unsaturated fatty acids. These TFA adducts are converted into hydroxylated derivatives under aqueous conditions. Here we describe an optimized cleavage protocol (precooling cleavage solution to 4 °C, 20 min cleavage at 22 °C), which minimizes TFA adduct formation, retains the unsaturated hydrocarbon chain character, and ensures high yields of the synthesis.
Collapse
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität Butenandtstr, München, Germany.
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität Butenandtstr, München, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr, München, Germany
| |
Collapse
|
10
|
Sutton AT, Arrua RD, Gaborieau M, Castignolles P, Hilder EF. Characterization of oligo(acrylic acid)s and their block co-oligomers. Anal Chim Acta 2018; 1032:163-177. [PMID: 30143214 DOI: 10.1016/j.aca.2018.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023]
Abstract
Oligo(acrylic acid), oligoAA are important species currently used industrially in the stabilization of paints and also for the production of self-assembled polymer structures which have been shown to have useful applications in analytical separation methods and potentially in drug delivery systems. To properly tailor the synthesis of oligoAA, and its block co-oligomers synthesized by Reversible-Addition Fragmentation chain Transfer (RAFT) polymerization to applications, detailed knowledge about the chemical structure is needed. Commonly used techniques such as Size Exclusion Chromatography (SEC) and Electrospray Ionization-Mass Spectrometry (ESI-MS) suffer from poor resolution and non-quantitative distributions, respectively. In this work free solution Capillary Electrophoresis (CE) has been thoroughly investigated as an alternative, allowing for the separation of oligoAA by molar mass and the RAFT agent end group. The method was then extended to block co-oligomers of acrylic acid and styrene. Peak capacities up to 426 were observed for these 1D CE separations, 10 times greater than what has been achieved for Liquid Chromatography (LC) of oligostyrenes. To provide a comprehensive insight into the chemical structure of these materials 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy was used to provide an accurate average chain length and reveal the presence of branching. The chain length at which branching is detected was investigated with the results showing a degree of branching of 1% of the monomer units in oligoAA with an average chain length of 9 monomer units, which was the shortest chain length at which branching could be detected. This branching is suspected to be a result of both intermolecular and intramolecular transfer reactions. The combination of free solution CE and NMR spectroscopy is shown to provide a near complete elucidation of the chemical structure of oligoAA including the average chain length and branching as well as the chain length and RAFT agent end group distribution. Furthermore, the purity in terms of the dead chains and unreacted RAFT agent was quantified. The use of free solution CE and 1H NMR spectroscopy demonstrated in this work can be routinely applied to oligoelectrolytes and their block co-oligomers to provide an accurate characterization which allows for better design of the materials produced from these oligomers.
Collapse
Affiliation(s)
- Adam T Sutton
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia 5011, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - R Dario Arrua
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia 5011, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Marianne Gaborieau
- Western Sydney University, ACROSS, School of Science and Health, Locked Bag 1797, Penrith NSW 2751, Australia; Western Sydney University, Medical Sciences Research Group, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Patrice Castignolles
- Western Sydney University, ACROSS, School of Science and Health, Locked Bag 1797, Penrith NSW 2751, Australia.
| | - Emily F Hilder
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia 5011, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia.
| |
Collapse
|
11
|
Reinhard S, Wang Y, Dengler S, Wagner E. Precise Enzymatic Cleavage Sites for Improved Bioactivity of siRNA Lipo-Polyplexes. Bioconjug Chem 2018; 29:3649-3657. [DOI: 10.1021/acs.bioconjchem.8b00585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Yanfang Wang
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Sebastian Dengler
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
- Nanosystems Initiative
Munich (NIM), Schellingstrasse 4, 80799 München, Germany
| |
Collapse
|
12
|
Li T, Wu Z, Qin W. Integration of capillary electrophoresis with gold nanoparticle-based colorimetry. Anal Chim Acta 2017; 995:114-121. [DOI: 10.1016/j.aca.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/18/2022]
|
13
|
Danilovtseva EN, Maheswari Krishnan U, Pal'shin VA, Annenkov VV. Polymeric Amines and Ampholytes Derived from Poly(acryloyl chloride): Synthesis, Influence on Silicic Acid Condensation and Interaction with Nucleic Acid. Polymers (Basel) 2017; 9:polym9110624. [PMID: 30965927 PMCID: PMC6418922 DOI: 10.3390/polym9110624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
Polymeric amines are intensively studied due to various valuable properties. This study describes the synthesis of new polymeric amines and ampholytes by the reaction of poly(acryloyl chloride) with trimethylene-based polyamines containing one secondary and several (1⁻3) tertiary amine groups. The polymers contain polyamine side chains and carboxylic groups when the polyamine was in deficiency. These polymers differ in structure of side groups, but they are identical in polymerization degree and polydispersity, which facilitates the study of composition-properties relationships. The structure of the obtained polymers was confirmed with 13C nuclear magnetic resonance infrared spectroscopy, and acid-base properties were studied with potentiometry titration. Placement of the amine groups in the side chains influences their acid-base properties: protonation of the amine group exerts a larger impact on the amine in the same side chain than on the amines in the neighboring side chains. The obtained polymers are prone to aggregation in aqueous solutions tending to insolubility at definite pH values in the case of polyampholytes. Silicic acid condensation in the presence of new polymers results in soluble composite nanoparticles and composite materials which consist of ordered submicrometer particles according to dynamic light scattering and electron microscopy. Polymeric amines, ampholytes, and composite nanoparticles are capable of interacting with oligonucleotides, giving rise to complexes that hold promise for gene delivery applications.
Collapse
Affiliation(s)
- Elena N Danilovtseva
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, 664033 Irkutsk, Russia.
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India.
| | - Viktor A Pal'shin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, 664033 Irkutsk, Russia.
| | - Vadim V Annenkov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, 664033 Irkutsk, Russia.
| |
Collapse
|
14
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
15
|
Reinhard S, Zhang W, Wagner E. Optimized Solid‐Phase‐Assisted Synthesis of Oleic Acid Containing siRNA Nanocarriers. ChemMedChem 2017; 12:1464-1470. [DOI: 10.1002/cmdc.201700350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Wei Zhang
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
- Nanosystems Initiative Munich, NIM Schellingstr. 4 80799 München Germany
| |
Collapse
|
16
|
Niño-Pariente A, Armiñán A, Reinhard S, Scholz C, Kos P, Wagner E, Vicent MJ. Design of Poly-l-Glutamate-Based Complexes for pDNA Delivery. Macromol Biosci 2017; 17. [PMID: 28378951 DOI: 10.1002/mabi.201700029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Indexed: 12/19/2022]
Abstract
Due to the polyanionic nature of DNA, typically cationic or neutral delivery vehicles have been used for gene delivery. As a new approach, this study focuses on the design, development, and validation of nonviral polypeptide-based carriers for oligonucleotide delivery based on a negatively charged poly-l-glutamic acid (PGA) backbone partly derivatized with oligoaminoamide residues. To this end, PGA-derivatives modified with different pentameric succinyl tetraethylene pentamines (Stp5 ) are designed. Optionally, histidines for modulation of endosomal buffer capacity and cysteines for pDNA complex stabilization are included, followed by characterization of biophysical properties and gene transfer efficiency in N2a neuroblastoma or 4T1 breast cancer cells.
Collapse
Affiliation(s)
- Amaya Niño-Pariente
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | - Claudia Scholz
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| |
Collapse
|
17
|
Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex Evolution: Understanding Biology, Optimizing Performance. Mol Ther 2017; 25:1476-1490. [PMID: 28274797 DOI: 10.1016/j.ymthe.2017.01.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Polyethylenimine (PEI) is a gold standard polycationic transfectant. However, the highly efficient transfecting activity of PEI and many of its derivatives is accompanied by serious cytotoxic complications and safety concerns at innate immune levels, which impedes the development of therapeutic polycationic nucleic acid carriers in general and their clinical applications. In recent years, the dilemma between transfection efficacy and adverse PEI activities has been addressed from in-depth investigations of cellular processes during transfection and elucidation of molecular mechanisms of PEI-mediated toxicity and translation of these integrated events to chemical engineering of novel PEI derivatives with an improved benefit-to-risk ratio. This review addresses these perspectives and discusses molecular events pertaining to dynamic and multifaceted PEI-mediated cytotoxicity, including membrane destabilization, mitochondrial dysfunction, and perturbations of glycolytic flux and redox homeostasis as well as chemical strategies for the generation of better tolerated polycations. We further examine the effect of PEI and its derivatives on complement activation and interaction with Toll-like receptors. These perspectives are intended to lay the foundation for an improved understanding of interlinked mechanisms controlling transfection and toxicity and their translation for improved engineering of polycation-based transfectants.
Collapse
Affiliation(s)
- Arnaldur Hall
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 65 Solna, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany.
| | - Seyed Moein Moghimi
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| |
Collapse
|
18
|
Zhang P, Wagner E. History of Polymeric Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:26. [PMID: 28181193 DOI: 10.1007/s41061-017-0112-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022]
Abstract
As an option for genetic disease treatment and an alternative for traditional cancer chemotherapy, gene therapy achieves significant attention. Nucleic acid delivery, however, remains a main challenge in human gene therapy. Polymer-based delivery systems offer a safer and promising route for therapeutic gene delivery. Over the past five decades, various cationic polymers have been optimized for increasingly effective nucleic acid transfer. This resulted in a chemical evolution of cationic polymers from the first-generation polycations towards bioinspired multifunctional sequence-defined polymers and nanocomposites. With the increasing of knowledge in molecular biological processes and rapid progress of macromolecular chemistry, further improvement of polymeric nucleic acid delivery systems will provide effective tool for gene-based therapy in the near future.
Collapse
Affiliation(s)
- Peng Zhang
- Pharmaceutical Biotechnology, Center for System-Based Drug Research Ludwig-Maximilians-Universität, 81377, Munich, Germany. .,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research Ludwig-Maximilians-Universität, 81377, Munich, Germany.,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany.,Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, 80799, Munich, Germany
| |
Collapse
|
19
|
Abstract
Key to the widespread application of smart polymers in drug delivery is understanding the mechanistic interplay, as well as consequence, of the presence of these macromolecules within living systems.
Collapse
Affiliation(s)
| | - S. Moein Moghimi
- School of Medicine
- Pharmacy and Health
- Durham University
- Stockton-on-Tees
- UK
| |
Collapse
|
20
|
Zhang YM, Yang Y, Zhang YH, Liu Y. Polysaccharide Nanoparticles for Efficient siRNA Targeting in Cancer Cells by Supramolecular pKa Shift. Sci Rep 2016; 6:28848. [PMID: 27363811 PMCID: PMC4929451 DOI: 10.1038/srep28848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Biomacromolecular pKa shifting is considered as one of the most ubiquitous processes in biochemical events, e.g., the enzyme-catalyzed reaction and protein conformational stabilization. In this paper, we report on the construction of biocompatible polysaccharide nanoparticle with targeting ability and lower toxicity by supramolecular pKa shift strategy. This was realized through a ternary assembly constructed by the dual host‒guest interactions of an adamantane-bis(diamine) conjugate (ADA) with cucurbit[6]uril (CB[6]) and a polysaccharide. The potential application of such biocompatible nanostructure was further implemented by the selective transportation of small interfering RNA (siRNA) in a controlled manner. It is demonstrated that the strong encapsulation of the ADA's diammonium tail by CB[6] not only reduced the cytotoxicity of the nano-scaled vehicle but also dramatically enhanced cation density through an obvious positive macrocycle-induced pKa shift, which eventually facilitated the subsequent siRNA binding. With a targeted polysaccharide shell containing a cyclodextrin‒hyaluronic acid conjugate, macrocycle-incorporated siRNA polyplexes were specifically delivered into malignant human prostate PC-3 cells. The supramolecular polysaccharide nanoparticles, the formation of which was enabled and promoted by the complexation-assisted pKa shift, may be used as a versatile tool for controlled capture and release of biofunctional substrates.
Collapse
Affiliation(s)
- Ying-Ming Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yang Yang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu-Hui Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
21
|
Reinhard S, Wagner E. How to Tackle the Challenge of siRNA Delivery with Sequence-Defined Oligoamino Amides. Macromol Biosci 2016; 17. [PMID: 27328447 DOI: 10.1002/mabi.201600152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/24/2016] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) as a mechanism of gene regulation provides exciting opportunities for medical applications. Synthetic small interfering RNA (siRNA) triggers the knockdown of complementary mRNA sequences in a catalytic fashion and has to be delivered into the cytosol of the targeted cells. The design of adequate carrier systems to overcome multiple extracellular and intracellular roadblocks within the delivery process has utmost importance. Cationic polymers form polyplexes through electrostatic interaction with negatively charged nucleic acids and present a promising class of carriers. Issues of polycations regarding toxicity, heterogeneity, and polydispersity can be overcome by solid-phase-assisted synthesis of sequence-defined cationic oligomers. These medium-sized highly versatile nucleic acid carriers display low cytotoxicity and can be modified and tailored in multiple ways to meet specific requirements of nucleic acid binding, polyplex size, shielding, targeting, and intracellular release of the cargo. In this way, sequence-defined cationic oligomers can mimic the dynamic and bioresponsive behavior of viruses.
Collapse
Affiliation(s)
- Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig Maximilians University, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig Maximilians University, 81377, Munich, Germany.,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany
| |
Collapse
|
22
|
Zhang W, Müller K, Kessel E, Reinhard S, He D, Klein PM, Höhn M, Rödl W, Kempter S, Wagner E. Targeted siRNA Delivery Using a Lipo-Oligoaminoamide Nanocore with an Influenza Peptide and Transferrin Shell. Adv Healthc Mater 2016; 5:1493-504. [PMID: 27109317 DOI: 10.1002/adhm.201600057] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Developing RNA-interference-based therapeutic approaches with efficient and targeted cytosolic delivery of small interfering RNA (siRNA) is remaining a critical challenge since two decades. Herein, a multifunctional transferrin receptor (TfR)-targeted siRNA delivery system (Tf&INF7) is designed based on siRNA complexes formed with the cationic lipo-oligoamino amide 454, sequentially surface-modified with polyethylene glycol-linked transferrin (Tf) for receptor targeting and the endosomolytic peptide INF7 for efficient cytosolic release of the siRNA. Effective Tf&INF7 polyplex internalization and target gene silencing are demonstrated for the TfR overexpressing tumor cell lines (K562, D145, and N2a). Treatment with antitumoral EG5 siRNA results in a block of tumor cell growth and triggered apoptosis. Tf-modified polyplexes are far more effective than the corresponding albumin- (Alb) or nonmodified 454 polyplexes. Competition experiments with excess of Tf demonstrate TfR target specificity. As alternative to the ligand Tf, an anti-murine TfR antibody is incorporated into the polyplexes for specific targeting and gene silencing in the murine N2a cell line. In vivo distribution studies not only demonstrate an enhanced tumor residence of siRNA in N2a tumor-bearing mice with the Tf&INF7 as compared to the 454 polyplex group but also a reduced siRNA nanoparticle stability limiting the in vivo performance.
Collapse
Affiliation(s)
- Wei Zhang
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Katharina Müller
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Sören Reinhard
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Dongsheng He
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Philipp M. Klein
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Susanne Kempter
- Department of Physics Ludwig‐Maximilians‐Universität München Geschwister‐Scholl‐Platz 1 80539 Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| |
Collapse
|
23
|
Abstract
Molecular medicine opens into a space of novel specific therapeutic agents: intracellularly active drugs such as peptides, proteins or nucleic acids, which are not able to cross cell membranes and enter the intracellular space on their own. Through the development of cell-targeted shuttles for specific delivery, this restriction in delivery has the potential to be converted into an advantage. On the one hand, due to the multiple extra- and intracellular barriers, such carrier systems need to be multifunctional. On the other hand, they must be precise and reproducibly manufactured due to pharmaceutical reasons. Here we review the design of precise sequence-defined delivery carriers, including solid-phase synthesized peptides and nonpeptidic oligomers, or nucleotide-based carriers such as aptamers and origami nanoboxes.
Collapse
|
24
|
Schimka S, Santer S, Mujkić-Ninnemann NM, Bléger D, Hartmann L, Wehle M, Lipowsky R, Santer M. Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction. Biomacromolecules 2016; 17:1959-68. [DOI: 10.1021/acs.biomac.6b00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Selina Schimka
- Institute
of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
- Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Svetlana Santer
- Institute
of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | | | - David Bléger
- Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Laura Hartmann
- Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Marko Wehle
- Theory
and Bio-Systems Group, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Theory
and Bio-Systems Group, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mark Santer
- Theory
and Bio-Systems Group, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
25
|
Morys S, Wagner E, Lächelt U. From Artificial Amino Acids to Sequence-Defined Targeted Oligoaminoamides. Methods Mol Biol 2016; 1445:235-258. [PMID: 27436323 DOI: 10.1007/978-1-4939-3718-9_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Artificial oligoamino acids with appropriate protecting groups can be used for the sequential assembly of oligoaminoamides on solid-phase. With the help of these oligoamino acids multifunctional nucleic acid (NA) carriers can be designed and produced in highly defined topologies. Here we describe the synthesis of the artificial oligoamino acid Fmoc-Stp(Boc3)-OH, the subsequent assembly into sequence-defined oligomers and the formulation of tumor-targeted plasmid DNA (pDNA) polyplexes.
Collapse
Affiliation(s)
- Stephan Morys
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, Germany
- Nanosystems Initiative, Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, Germany.
- Nanosystems Initiative, Munich, Germany.
| |
Collapse
|
26
|
Lehto T, Wagner E. Sequence-defined polymers for the delivery of oligonucleotides. Nanomedicine (Lond) 2015; 9:2843-59. [PMID: 25535686 DOI: 10.2217/nnm.14.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Short synthetic oligonucleotides (ONs) are a group of therapeutic molecules with enormous clinical potential owing to their high specificity and ability to target the expression of virtually any single or group of genes. Clinical translation of ONs is hampered by the inadequate bioavailability in the target cells due to the substantial extracellular and intracellular barriers exposed to these molecules. Different cationic polymers have been successfully deployed for the delivery of ONs. However, heterogeneous nature of these classical polymers is not suitable for clinical applications and hence vectors with completely defined structure are required. In this review, we discuss recent advances with sequence-defined polymers and their application for the delivery of short ONs.
Collapse
Affiliation(s)
- Taavi Lehto
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
27
|
Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes. J Control Release 2015; 205:109-19. [DOI: 10.1016/j.jconrel.2014.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/29/2022]
|
28
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
29
|
Kos P, Lächelt U, Herrmann A, Mickler FM, Döblinger M, He D, Krhač Levačić A, Morys S, Bräuchle C, Wagner E. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. NANOSCALE 2015; 7:5350-5362. [PMID: 25721131 DOI: 10.1039/c4nr06556e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.
Collapse
Affiliation(s)
- Petra Kos
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig Maximilians University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
He D, Wagner E. Defined Polymeric Materials for Gene Delivery. Macromol Biosci 2015; 15:600-12. [DOI: 10.1002/mabi.201400524] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Dongsheng He
- Pharmaceutical Biotechnology; Center for System-based Drug Research and Center for NanoScience (CeNS); Ludwig-Maximilians-University; 81377 Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology; Center for System-based Drug Research and Center for NanoScience (CeNS); Ludwig-Maximilians-University; 81377 Munich Germany
| |
Collapse
|
31
|
Kos P, Lächelt U, He D, Nie Y, Gu Z, Wagner E. Dual-Targeted Polyplexes Based on Sequence-Defined Peptide-PEG-Oligoamino Amides. J Pharm Sci 2015; 104:464-75. [DOI: 10.1002/jps.24194] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/13/2023]
|
32
|
Mehrabadi FS, Hirsch O, Zeisig R, Posocco P, Laurini E, Pricl S, Haag R, Kemmner W, Calderón M. Structure–activity relationship study of dendritic polyglycerolamines for efficient siRNA transfection. RSC Adv 2015. [DOI: 10.1039/c5ra10944b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structure–activity relationship studies were performed through in vitro, in silico, and in vivo analysis in order to evaluate the gene transfection potential of dendritic polyglycerolamines with different amine loadings.
Collapse
Affiliation(s)
| | - Ole Hirsch
- Physikalisch-Technische Bundesanstalt
- 10587 Berlin
- Germany
| | - Reiner Zeisig
- Experimental Pharmacology & Oncology GmbH
- 13125 Berlin
- Germany
| | - Paola Posocco
- Molecular Simulation Engineering (MOSE) Laboratory
- DICAMP
- University of Trieste
- 34127 Trieste
- Italy
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory
- DICAMP
- University of Trieste
- 34127 Trieste
- Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory
- DICAMP
- University of Trieste
- 34127 Trieste
- Italy
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Wolfgang Kemmner
- Translational Oncology
- Experimental and Clinical Research Center
- 13125 Berlin
- Germany
| | - Marcelo Calderón
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
33
|
Abstract
For the last five decades cationic polymers have been used for nucleic acids transfection. Our understanding of polymer-nucleic acid interactions and their rational use in delivery has continuously increased. The great improvements in macromolecular chemistry and the recognition of distinct biological extra- and intracellular delivery hurdles triggered several breakthrough developments, including the discovery of natural and synthetic polycations for compaction of nucleic acids into stable nanoparticles termed polyplexes; the incorporation of targeting ligands and surface-shielding of polyplexes to enable receptor-mediated gene delivery into defined target tissues; and strongly improved intracellular transfer efficacy by better endosomal escape of vesicle-trapped polyplexes into the cytosol. These experiences triggered the development of second-generation polymers with more dynamic properties, such as endosomal pH-responsive release mechanisms, or biodegradable units for improved biocompatibility and intracellular release of the nucleic acid pay load. Despite a better biological understanding, significant challenges such as efficient nuclear delivery and persistence of gene expression persist. The therapeutic perspectives widened from pDNA-based gene therapy to application of novel therapeutic nucleic acids including mRNA, siRNA, and microRNA. The finding that different therapeutic pay loads require different tailor-made carriers complicates preclinical developments. Convincing evidence of medical efficacy still remains to be demonstrated. Bioinspired multifunctional polyplexes resembling "synthetic viruses" appear as attractive opportunity, but provide additional challenges: how to identify optimum combinations of functional delivery units, and how to prepare such polyplexes reproducibly in precise form? Design of sequence-defined polymers, screening of combinatorial polymer and polyplex libraries are tools for further chemical evolution of polyplexes.
Collapse
Affiliation(s)
- Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-University Munich, and Nanosystems Initiative Munich (NIM), Munich, Germany
| |
Collapse
|