1
|
Mishra S, Tripathy SK, Paul D, Laha P, Santra MK, Patra S. Asymmetrically Coordinated Heterodimetallic Ir-Ru System: Synthesis, Computational, and Anticancer Aspects. Inorg Chem 2023; 62:7003-7013. [PMID: 37097171 DOI: 10.1021/acs.inorgchem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we present an unprecedented formation of a heterodinuclear complex [{(ppy)2IrIII}(μ-phpy){RuII(tpy)}](ClO4)2 {[1](ClO4)2} using terpyridyl/phenylpyridine as ancillary ligands and asymmetric phpy as a bridging ligand. The asymmetric binding mode (N∧N-∩-N∧N∧C-) of the phpy ligand in {[1](ClO4)2} is confirmed by 1H, 13C, 1H-1H correlated spectroscopy (COSY), high-resolution mass spectrum (HRMS), single-crystal X-ray crystallography techniques, and solution conductivity measurements. Theoretical investigation suggests that the highest occupied molecular orbital (HOMO) and the least unoccupied molecular orbital (LUMO) of [1]2+ are located on iridium/ppy and phpy, respectively. The complex displays a broad low energy charge transfer (CT) band within 450-575 nm. The time-dependent density functional theory (TDDFT) analysis suggests this as a mixture of metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT), where both ruthenium, iridium, and ligands are involved. Complex {[1](ClO4)2} exhibits RuIIIrIII/RuIIIIrIII- and RuIIIIrIII/RuIIIIrIV-based oxidative couples at 0.83 and 1.39 V, respectively. The complex shows anticancer activity and selectivity toward human breast cancer cells (IC50; MCF-7: 9.3 ± 1.2 μM, and MDA-MB-231: 8.6 ± 1.2 μM) over normal breast cells (MCF 10A: IC50 ≈ 21 ± 1.3 μM). The Western blot analysis and fluorescence microscopy images suggest that combined apoptosis and autophagy are responsible for cancer cell death.
Collapse
Affiliation(s)
- Saumyaranjan Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Suman Kumar Tripathy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Debasish Paul
- National Centre for Cell Science, NCCS Complex, Pune University Campus Ganeshkhind, Pune 411007, Maharashtra, India
| | - Paltan Laha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Manas Kumar Santra
- National Centre for Cell Science, NCCS Complex, Pune University Campus Ganeshkhind, Pune 411007, Maharashtra, India
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| |
Collapse
|
2
|
Sung B, Kim HK, Baek AR, Yang BW, Kim YH, Choi G, Park HJ, Kim M, Lee J, Chang Y. Nonsteroidal Anti-Inflammatory Drug Conjugated with Gadolinium (III) Complex as an Anti-Inflammatory MRI Agent. Int J Mol Sci 2023; 24:ijms24076870. [PMID: 37047841 PMCID: PMC10095586 DOI: 10.3390/ijms24076870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Studies have been actively conducted to ensure that gadolinium-based contrast agents for magnetic resonance imaging (MRI) are accompanied by various biological functions. A new example is the anti-inflammatory theragnostic MRI agent to target inflammatory mediators for imaging diagnosis and to treat inflammatory diseases simultaneously. We designed, synthesized, and characterized a Gd complex of 1,4,7-tris(carboxymethylaza) cyclododecane-10-azaacetylamide (DO3A) conjugated with a nonsteroidal anti-inflammatory drug (NSAID) that exerts the innate therapeutic effect of NSAIDs and is also applicable in MRI diagnostics. Gd-DO3A-fen (0.1 mmol/kg) was intravenously injected into the turpentine oil-induced mouse model, with Gd-DO3A-BT as a control group. In the in vivo MRI experiment, the contrast-to-noise ratio (CNR) was higher and persisted longer than that with Gd-DO3A-BT; specifically, the CNR difference was almost five times at 2 h after injection. Gd-DO3A-fen had a binding affinity (Ka) of 6.68 × 106 M-1 for the COX-2 enzyme, which was 2.1-fold higher than that of fenbufen, the original NSAID. In vivo evaluation of anti-inflammatory activity was performed in two animal models. In the turpentine oil-induced model, the mRNA expression levels of inflammatory parameters such as COX-2, TNF-α, IL-1β, and IL-6 were reduced, and in the carrageenan-induced edema model, swelling was suppressed by 72% and there was a 2.88-fold inhibition compared with the saline group. Correlation analysis between in vitro, in silico, and in vivo studies revealed that Gd-DO3A-fen acts as an anti-inflammatory theragnostic agent by directly binding to COX-2.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Medical & Biological Engineering, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Dong-gu, Daegu 41061, Republic of Korea
| | - Ah-Rum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, Jung-gu, Daegu 41566, Republic of Korea
| | - Byeong-Woo Yang
- Department of Medical & Biological Engineering, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Garam Choi
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Hyun-Jin Park
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Minsup Kim
- Department of Biotechnology and Bioinformatics, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Jongmin Lee
- Department of Radiology, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Republic of Korea
| | - Yongmin Chang
- Department of Radiology, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Maiti M, Kikuchi K, Athul KK, Kaur A, Bhuniya S. β-Galactosidase-activated theranostic for hepatic carcinoma therapy and imaging. Chem Commun (Camb) 2022; 58:6413-6416. [PMID: 35543438 DOI: 10.1039/d2cc01825j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A β-galactosidase activatable fluorescent turn-on theranostic Gal-CGem exhibits gemcitabine release specifically in β-galactosidase overexpressing hepatic carcinoma cells. The cytotoxicity of Gal-CGem in cancer cells is achieved through the apoptotic cell death pathway. Overall, Gal-CGem is a new frontline prodrug in cancer therapy that has provided antineoplastic information through fluorescence imaging.
Collapse
Affiliation(s)
- Mrinmoy Maiti
- Department of Science, Amrita School of Engineering, Amrita Viswa Vidyapeetham, Coimbatore, India, 641112
| | - Kai Kikuchi
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - K K Athul
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Arch Waterfront, GP Block, Sector V, Kolkata, India, 700091.
| | - Amandeep Kaur
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Arch Waterfront, GP Block, Sector V, Kolkata, India, 700091.
| |
Collapse
|
4
|
Challenges and opportunities in the development of metal-based anticancer theranostic agents. Biosci Rep 2022; 42:231168. [PMID: 35420649 PMCID: PMC9109461 DOI: 10.1042/bsr20212160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Around 10 million fatalities were recorded worldwide in 2020 due to cancer and statistical projections estimate the number to increase by 60% in 2040. With such a substantial rise in the global cancer burden, the disease will continue to impose a huge socio-economic burden on society. Currently, the most widely used clinical treatment modality is cytotoxic chemotherapy using platinum drugs which is used to treat variety of cancers. Despite its clinical success, critical challenges like resistance, off-target side effects and cancer variability often reduce its overall therapeutic efficiency. These challenges require faster diagnosis, simultaneous therapy and a more personalized approach toward cancer management. To this end, small-molecule ‘theranostic’ agents have presented a viable solution combining diagnosis and therapy into a single platform. In this review, we present a summary of recent efforts in the design and optimization of metal-based small-molecule ‘theranostic’ anticancer agents. Importantly, we highlight the advantages of a theranostic candidate over the purely therapeutic or diagnostic agent in terms of evaluation of its biological properties.
Collapse
|
5
|
|
6
|
Gd-Complex of a Rosmarinic Acid Conjugate as an Anti-Inflammatory Theranostic Agent via Reactive Oxygen Species Scavenging. Antioxidants (Basel) 2020; 9:antiox9080744. [PMID: 32823673 PMCID: PMC7464237 DOI: 10.3390/antiox9080744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
Rosmarinic acid (RosA), an important polyphenol, is known for its antioxidant and anti-inflammatory activities. However, its application in theranostics has been rarely reported. Therefore, a new single-molecule anti-inflammatory theranostic compound containing RosA would be of great interest. A gadolinium (Gd) complex of 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid (DO3A) and RosA (Gd(DO3A-RosA)(H2O)) was synthesized and examined for use as a single-molecule theranostic agent. Its kinetic stability is comparable to that of clinically used macrocyclic magnetic resonance imaging contrast agents. In addition, its relaxivity is higher than that of structurally analogous Gd-BT-DO3A. This agent was evaluated for inflammatory targeting magnetic resonance contrast and showed strong and prolonged enhancement of imaging in inflamed tissues of mice. The theranostic agent also possesses antioxidant and anti-inflammatory activities, as evidenced by reactive oxygen species scavenging, superoxide dismutase activity, and inflammatory factors. The novel RosA-conjugated Gd complex is a promising theranostic agent for the imaging of inflamed tissues, as well as for the treatment of inflammation and oxidative stress.
Collapse
|
7
|
Kim HK, Lee JJ, Choi G, Sung B, Kim YH, Baek AR, Kim S, Song H, Kim M, Cho AE, Lee GH, Moon S, Kang MK, Lee JJ, Chang Y. Gadolinium-Based Neuroprognostic Magnetic Resonance Imaging Agents Suppress COX-2 for Prevention of Reperfusion Injury after Stroke. J Med Chem 2020; 63:6909-6923. [PMID: 32545964 DOI: 10.1021/acs.jmedchem.0c00285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advancements in recanalization therapies have rendered reperfusion injury an important challenge for stroke management. It is essential to work toward effective therapeutics that protect the ischemic brain from reperfusion injury. Here, we report a new concept of neuroprognostic agents, which combine molecular diagnostic imaging and targeted neuroprotection for treatment of reperfusion injury after stroke. These neuroprognostic agents are inflammation-targeted gadolinium compounds conjugated with nonsteroidal anti-inflammatory drugs (NSAIDs). Our results demonstrated that gadolinium-based MRI contrast agents conjugated with NSAIDs suppressed the increase in cyclooxygenase-2 (COX-2) levels, ameliorated glial activation, and neuron damage that are phenotypic for stroke by mitigating neuroinflammation, which prevented reperfusion injury. In addition, this study showed that the neuroprognostic agents are promising T1 molecular MRI contrast agents for detecting precise reperfusion injury locations at the molecular level. Our results build on this new concept of neuroprognostics as a novel management strategy for ischemia-reperfusion injury, combining neuroprotection and molecular diagnostics.
Collapse
Affiliation(s)
- Hee-Kyung Kim
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 41944 Daegu, Korea.,Institute of Biomedical Engineering Research, Kyungpook National University, 41944 Daegu, Korea
| | - Jung-Jin Lee
- Department of R & D Center, Myungmoon Bio. Co., Hwaseong, 18622 Gyeonggi-do, Korea
| | - Garam Choi
- Department of R & D Center, Myungmoon Bio. Co., Hwaseong, 18622 Gyeonggi-do, Korea.,Department of Medical & Biological Engineering, Kyungpook National University, 41944 Daegu, Korea
| | - Bokyung Sung
- Department of Medical & Biological Engineering, Kyungpook National University, 41944 Daegu, Korea
| | - Yeoun-Hee Kim
- Department of R & D Center, Myungmoon Bio. Co., Hwaseong, 18622 Gyeonggi-do, Korea
| | - Ah Rum Baek
- Department of Medical & Biological Engineering, Kyungpook National University, 41944 Daegu, Korea
| | - Soyeon Kim
- Department of Medical & Biological Engineering, Kyungpook National University, 41944 Daegu, Korea
| | - Huijin Song
- Institute of Biomedical Engineering Research, Kyungpook National University, 41944 Daegu, Korea
| | - Minsup Kim
- Department of Bioinformatics, Korea University, 30019 Sejong, Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, 30019 Sejong, Korea
| | - Gang Ho Lee
- Department of Chemistry, Kyungpook National University, 41566 Daegu, Korea
| | - Sungjun Moon
- Department of Radiology, Yeungnam University Medical Center, 42415 Daegu, Korea
| | - Min-Kyoung Kang
- Laboratory Animal Center, KBIO Osong Medical Innovation Foundation, 28160 Osong, Korea
| | - Jae Jun Lee
- Laboratory Animal Center, KBIO Osong Medical Innovation Foundation, 28160 Osong, Korea
| | - Yongmin Chang
- Department of Medical & Biological Engineering, Kyungpook National University, 41944 Daegu, Korea.,Department of Radiology, Kyungpook National University Hospital, 41944 Daegu, Korea.,Department of Molecular Medicine, School of Medicine, Kyungpook National University, 41944 Daegu, Korea
| |
Collapse
|
8
|
Florès O, Trommenschlager A, Amor S, Marques F, Silva F, Gano L, Denat F, Cabral Campello MP, Goze C, Bodio E, Le Gendre P. In vitro and in vivo trackable titanocene-based complexes using optical imaging or SPECT. Dalton Trans 2017; 46:14548-14555. [DOI: 10.1039/c7dt01981e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two unprecedented titanocene-based theranostics have been synthesized, characterized, and tracked either in vitro (BODIPY probe) or in vivo (111In-DOTA probe).
Collapse
|
9
|
Bertrand B, Doulain PE, Goze C, Bodio E. Development of trackable metal-based drugs: new generation of therapeutic agents. Dalton Trans 2016; 45:13005-11. [DOI: 10.1039/c5dt04275e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Today, it is not sufficient to conceive an efficient drug, its mechanism of action have to be understood. To tackle this issue, trackable therapeutic agents are an interesting solution.
Collapse
Affiliation(s)
- Benoît Bertrand
- Institut de Chimie Moléculaire
- UMR 6302 CNRS Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
- School of Chemistry
| | - Pierre-Emmanuel Doulain
- Institut de Chimie Moléculaire
- UMR 6302 CNRS Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Christine Goze
- Institut de Chimie Moléculaire
- UMR 6302 CNRS Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Ewen Bodio
- Institut de Chimie Moléculaire
- UMR 6302 CNRS Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
| |
Collapse
|
10
|
Bodio E, Le Gendre P, Denat F, Goze C. Development of Trackable Anticancer Agents Based on Metal Complexes. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Boselli L, Carraz M, Mazères S, Paloque L, González G, Benoit-Vical F, Valentin A, Hemmert C, Gornitzka H. Synthesis, Structures, and Biological Studies of Heterobimetallic Au(I)–Ru(II) Complexes Involving N-Heterocyclic Carbene-Based Multidentate Ligands. Organometallics 2015. [DOI: 10.1021/om501158m] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Luca Boselli
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Maëlle Carraz
- Université
de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3;
Faculté des sciences pharmaceutiques; 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France
- Institut de Recherche
pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse Cedex
9, France
| | - Serge Mazères
- CNRS, Institut
de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de
Toulouse, UPS, IPBS, Toulouse, France
| | - Lucie Paloque
- Université
de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3;
Faculté des sciences pharmaceutiques; 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France
- Institut de Recherche
pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse Cedex
9, France
| | - Germán González
- Université
de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3;
Faculté des sciences pharmaceutiques; 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France
- Institut de Recherche
pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse Cedex
9, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Alexis Valentin
- Université
de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3;
Faculté des sciences pharmaceutiques; 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France
- Institut de Recherche
pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse Cedex
9, France
| | - Catherine Hemmert
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Heinz Gornitzka
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
12
|
Gold-phosphine-porphyrin as potential metal-based theranostics. J Biol Inorg Chem 2015; 20:143-154. [PMID: 25476859 DOI: 10.1007/s00775-014-1220-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/18/2014] [Indexed: 01/12/2023]
Abstract
Two new gold-phosphine-porphyrin derivatives were synthesized and fully characterized, and their photophysical properties investigated along a water-soluble analog. The cytotoxicity of the compounds was tested on cancer cells (HCT116 and SW480), and their cell uptake was followed by fluorescence microscopy in vitro (on SW480). The proof that the water-soluble gold-phosphine-porphyrin is a biologically active compound that can be tracked in vitro was clearly established, especially concerning the water-soluble analog. Some preliminary photodynamic therapy (PDT) experiments were also performed. They highlight a dramatic increase of the cytotoxicity when the cells were illuminated for 30 min with white light.
Collapse
|
13
|
Doulain PE, Decréau R, Racoeur C, Goncalves V, Dubrez L, Bettaieb A, Le Gendre P, Denat F, Paul C, Goze C, Bodio E. Towards the elaboration of new gold-based optical theranostics. Dalton Trans 2015; 44:4874-83. [DOI: 10.1039/c4dt02977a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four new red BODIPY–gold(i) theranostic compounds were synthesized.
Collapse
|