1
|
Chen L, Tang H, Chen W, Wang J, Zhang S, Gao J, Chen Y, Zhu X, Huang Z, Chen J. Mitochondria-targeted cyclometalated iridium (III) complexes: Dual induction of A549 cells apoptosis and autophagy. J Inorg Biochem 2023; 249:112397. [PMID: 37844533 DOI: 10.1016/j.jinorgbio.2023.112397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
In this study, we synthesized 4 cyclometalated iridium complexes using N-(1,10-phenanthrolin-5-yl)picolinamide (PPA) as the main ligand, denoted as [Ir(ppy)2PPA]PF6 (ppy = 2-phenylpyridine, Ir1), [Ir(bzq)2PPA]PF6 (bzq = benzo[h]quinoline, Ir2), [Ir(dfppy)2PPA]PF6 (dfppy = 2-(3,5-difluorophenyl)pyridine, Ir3), and [Ir(thpy)2PPA]PF6 (thpy = 2-(thiophene-2-yl)pyridine, Ir4). Compared to cisplatin and oxaliplatin, all four complexes exhibited significant anti-tumor activity. Among them, Ir2 demonstrated higher cytotoxicity against A549 cells, with an IC50 value of 1.6 ± 0.2 μM. The experimental results indicated that Ir2 primarily localized in the mitochondria, inducing a large amount of reactive oxygen species (ROS) generation, that decreased in mitochondrial membrane potential (MMP), reduced ATP production, and further impaired mitochondrial function, leading to cytochrome c release. Additionally, Ir2 caused cell cycle arrest at the S phase and induced apoptosis through the AKT-mediated signaling pathway. Further investigations revealed that Ir2 could simultaneously induce both apoptosis and autophagy in A549 cells, with the latter acting as a non-protective mechanism that promoted cell death. More importantly, Ir2 exhibited low toxicity to both normal LO2 cells in vitro and zebrafish embryos in vivo. Consequently, these newly developed Ir(III) complexes show great potential in the development of novel and low-toxicity anticancer agents.
Collapse
Affiliation(s)
- Lanmei Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Hong Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Weigang Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Jie Wang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Shenting Zhang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Jie Gao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China
| | - Yu Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| | - Jincan Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| |
Collapse
|
2
|
Shahzad K, Asad M, Asiri AM, Irfan M, Iqbal MA. In-vitro anticancer profile of recent ruthenium complexes against liver cancer. REV INORG CHEM 2022. [DOI: 10.1515/revic-2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ruthenium complexes are considered as the most favorable alternatives to traditional platinum-based cancer drugs owing to their acceptable toxicity level, selectivity, variant oxidation states and ability to treat platinum-resistant cancer cells. They have similar ligand exchange kinetics as platinum drugs but can be tailored according to our desire by ligands influence. In the current study, we illustrate the in-vitro anticancer profile of some ruthenium complexes (2016–2021) against human hepatocellular carcinoma (HepG2). The anticancer activity of ruthenium complexes is determined by comparing their IC50 values with one another and positive controls. Fortunately, some ruthenium complexes including 3, 4, 6, 14, 15, 20, 42, and 48 exhibit surpassed in-vitro anticancer profile than that of positive controls promising as potential candidates against liver cancer. We also explored the structure-activity relationship (SAR) which is a key factor in the rational designing and synthesis of new ruthenium drugs. It covers the factors affecting anticancer activity including lipophilicity, planarity, area and bulkiness, the steric influence of different ligands, and electronic effects induced by ligands, stability, aqueous solubility and bioavailability to the target sites. The data reported here will provide strong support in the plausible design and synthesis of ruthenium anticancer drugs in the upcoming days.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
3
|
New [Pt(S2CNR2)Cl(PAr3)] complexes as anticancer agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Švec P, Petrov OV, Lang J, Štěpnička P, Groborz O, Dunlop D, Blahut J, Kolouchová K, Loukotová L, Sedláček O, Heizer T, Tošner Z, Šlouf M, Beneš H, Hoogenboom R, Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel Švec
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Oleg V. Petrov
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Jan Lang
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | | | - Ondřej Groborz
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - David Dunlop
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, CAS, Dolejškova 2155/3, Prague 8 182 23, Czech Republic
| | | | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Sedláček
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | | | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
5
|
Patel D, Athar M, Jha PC. Exploring Ruthenium‐Based Organometallic Inhibitors against Plasmodium falciparum Calcium Dependent Kinase 2 (PfCDPK2): A Combined Ensemble Docking, QM/MM and Molecular Dynamics Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202101801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dhaval Patel
- Department of Biological Sciences and Biotechnology Institute of Advanced Research Gujarat 382426 India
| | - Mohd Athar
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
- Center for Chemical Biology and Therapeutics InStem Bangalore 560065 Karnataka India
| | - Prakash C. Jha
- School of Applied Material Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
6
|
Kashif Amir M, Hogarth G, Khan Z, Imran M, Zia-ur-Rehman. Platinum(II) dithiocarbamate complexes [Pt(S2CNR2)Cl(PAr3)] as anticancer and DNA-damaging agents. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Yu Q, Liu Y, Wan JP. Transition metal-free synthesis of 3-trifluoromethyl chromones via tandem C–H trifluoromethylation and chromone annulation of enaminones. Org Chem Front 2020. [DOI: 10.1039/d0qo00855a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 3-trifluoromethyl chromones has been realized via transition metal-free reactions of o-hydroxyphenyl enaminones and the Langlois reagent via cascade C–H trifluoromethylation and chromone annulation.
Collapse
Affiliation(s)
- Qing Yu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| |
Collapse
|
8
|
Morrison CN, Prosser KE, Stokes RW, Cordes A, Metzler-Nolte N, Cohen SM. Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. Chem Sci 2019; 11:1216-1225. [PMID: 34123246 PMCID: PMC8148059 DOI: 10.1039/c9sc05586j] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive molecules. FBDD relies on fragment libraries, generally of modest size, but of high chemical diversity. Although good chemical diversity in FBDD libraries has been achieved in many respects, achieving shape diversity - particularly fragments with three-dimensional (3D) structures - has remained challenging. A recent analysis revealed that >75% of all conventional, organic fragments are predominantly 1D or 2D in shape. However, 3D fragments are desired because molecular shape is one of the most important factors in molecular recognition by a biomolecule. To address this challenge, the use of inert metal complexes, so-called 'metallofragments' (mFs), to construct a 3D fragment library is introduced. A modest library of 71 compounds has been prepared with rich shape diversity as gauged by normalized principle moment of inertia (PMI) analysis. PMI analysis shows that these metallofragments occupy an area of fragment space that is unique and highly underrepresented when compared to conventional organic fragment libraries that are comprised of orders of magnitude more molecules. The potential value of this metallofragment library is demonstrated by screening against several different types of proteins, including an antiviral, an antibacterial, and an anticancer target. The suitability of the metallofragments for future hit-to-lead development was validated through the determination of IC50 and thermal shift values for select fragments against several proteins. These findings demonstrate the utility of metallofragment libraries as a means of accessing underutilized 3D fragment space for FBDD against a variety of protein targets.
Collapse
Affiliation(s)
- Christine N Morrison
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Kathleen E Prosser
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Anna Cordes
- Lehrstuhl für Anorganische Chemie 1, Bioanorganische Chemie, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nils Metzler-Nolte
- Lehrstuhl für Anorganische Chemie 1, Bioanorganische Chemie, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
9
|
Süleymanoğlu M, Kaya B, Erdem-Kuruca S, Ülküseven B. Iron(III) and nickel(II) complexes of tetradentate thiosemicarbazones: Synthesis, structure, cytotoxicity, and lipophilicity. J Biochem Mol Toxicol 2019; 33:e22383. [PMID: 31392809 DOI: 10.1002/jbt.22383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 11/07/2022]
Abstract
Eighteen of the iron(III) and nickel(II) complexes with tetradentate thiosemicarbazidato ligands were synthesized and described, by analytical and spectroscopic methods. Two complexes as an example to the iron and nickel centered ones were crystallographically analyzed to confirm the molecular structures. Cytotoxic effects of the complexes on K562 chronic myeloid leukemia cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. For comparison, human umbilical vein endothelial cells (HUVECs) was used as a noncancerous cell line. While four of the iron(III) complexes exhibited the antileukemic effect with 50% inhibition of cell growth (IC50 ) values in the 3.4 to 6.9 μg/mL range on K562 cell line, the nickel(II) complexes showed no significant effect on both cell lines. The complexes Fe4, Fe5, and Fe6, bearing 4-methoxy substituent exhibited relatively high antiproliferative activity on both cell lines. Complex Fe3 with 3-methoxy and S-allyl groups exhibited a selectivity between K562 and HUVEC cells by IC50 values of 6.9 and >10 μg/mL, respectively. Lipophilicity, a key parameter for bioavailability and oral administration, was found in the range of -0.3 and +1.3 that desired for drug active ingredients. The results were discussed in the context of a structure-activity relationship.
Collapse
Affiliation(s)
- Mediha Süleymanoğlu
- Department of Medical Biology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Büşra Kaya
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serap Erdem-Kuruca
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Bahri Ülküseven
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
10
|
Zhang Y, Wang C, Huang W, Haruehanroengra P, Peng C, Sheng J, Han B, He G. Application of organocatalysis in bioorganometallic chemistry: asymmetric synthesis of multifunctionalized spirocyclic pyrazolone–ferrocene hybrids as novel RalA inhibitors. Org Chem Front 2018. [DOI: 10.1039/c8qo00422f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Asymmetric construction of chiral spirocyclic pyrazolone–ferrocene hybrids has been developed. The lead compound displayed potent RalA inhibition.
Collapse
Affiliation(s)
- Yuehua Zhang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Chunting Wang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Wei Huang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Cheng Peng
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Bo Han
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
- Department of Chemistry and The RNA Institute
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
11
|
Frontier of Development for Metallodrugs on the Basis of Metallomic Pharmacology and Medicinal Inorganic Chemistry. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Chloroquine-containing organoruthenium complexes are fast-acting multistage antimalarial agents. Parasitology 2016; 143:1543-56. [PMID: 27439976 DOI: 10.1017/s0031182016001153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the pharmacological activity of organoruthenium complexes containing chloroquine (CQ) as a chelating ligand. The complexes displayed intraerythrocytic activity against CQ-sensitive 3D7 and CQ-resistant W2 strains of Plasmodium falciparum, with potency and selectivity indexes similar to those of CQ. Complexes displayed activity against all intraerythrocytic stages, but moderate activity against Plasmodium berghei liver stages. However, unlike CQ, organoruthenium complexes impaired gametocyte viability and exhibited fast parasiticidal activity against trophozoites for P. falciparum. This functional property results from the ability of complexes to quickly induce oxidative stress. The parasitaemia of P. berghei-infected mice was reduced by treatment with the complex. Our findings demonstrated that using chloroquine for the synthesis of organoruthenium complexes retains potency and selectivity while leading to an increase in the spectrum of action and parasite killing rate relative to CQ.
Collapse
|
13
|
Carraher CE, Roner MR, Reckleben L, Black K, Frank J, Crichton R, Russell F, Moric-Johnson A, Miller L. Synthesis, structural characterization and preliminary cancer cell line results for polymers derived from reaction of titanocene dichloride and various poly(ethylene glycols). JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2016. [DOI: 10.1080/10601325.2016.1176440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Veit P, Prantl E, Förster C, Heinze K. Competitive NH···Ru/Fe Hydrogen Bonding in Ferrocenyl Ruthenocenyl Tosyl Hydrazone. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Veit
- Institute of Inorganic Chemistry
and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| | - Ephraim Prantl
- Institute of Inorganic Chemistry
and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry
and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry
and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
15
|
Amir MK, Zia-ur-Rehman ZUR, Hayat F, Khan SZ, Hogarth G, Kondratyuk T, Pezzuto J, Tahir MN. Monofunctional platinum(ii) dithiocarbamate complexes: synthesis, characterization and anticancer activity. RSC Adv 2016. [DOI: 10.1039/c6ra19469a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three heteroleptic platinum(ii) dithiocarbamates with good anticancer potency have been synthesized and characterized. The anticancer activity against five cell lines may be due to their strong complex-DNA adduct formation ability.
Collapse
Affiliation(s)
| | | | - Faisal Hayat
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Shahan Zeb Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
- Department of Chemistry
| | | | | | - John M. Pezzuto
- College of Pharmacy
- University of Hawaii at Hilo
- Hilo
- USA
- Arnold & Marie Schwartz College of Pharmacy
| | | |
Collapse
|
16
|
Bulfield D, Maschke M, Lieb M, Metzler-Nolte N. Synthesis, chemical reactivity and electrochemical behaviour of mono- and difluoro metallocenes. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Harper JL, Khalil IM, Shaw L, Bourguet-Kondracki ML, Dubois J, Valentin A, Barker D, Copp BR. Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B. Mar Drugs 2015; 13:5102-10. [PMID: 26266415 PMCID: PMC4557015 DOI: 10.3390/md13085102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022] Open
Abstract
In an effort to more accurately define the mechanism of cell death and to establish structure-activity relationship requirements for the marine meroterpenoid alkaloids thiaplidiaquinones A and B, we have evaluated not only the natural products but also dioxothiazine regioisomers and two precursor quinones in a range of bioassays. While the natural products were found to be weak inducers of ROS in Jurkat cells, the dioxothiazine regioisomer of thiaplidiaquinone A and a synthetic precursor to thiaplidiaquinone B were found to be moderately potent inducers. Intriguingly, and in contrast to previous reports, the mechanism of Jurkat cell death (necrosis vs. apoptosis) was found to be dependent upon the positioning of one of the geranyl sidechains in the compounds with thiaplidiaquinone A and its dioxothiazine regioisomer causing death dominantly by necrosis, while thiaplidiaquinone B and its dioxothiazine isomer caused cell death via apoptosis. The dioxothiazine regioisomer of thiaplidiaquinone A exhibited more potent in vitro antiproliferative activity against human tumor cells, with NCI sub-panel selectivity towards melanoma cell lines. The non-natural dioxothiazine regioisomers were also more active in antiplasmodial and anti-farnesyltransferase assays than their natural product counterparts. The results highlight the important role that natural product total synthesis can play in not only helping understand the structural basis of biological activity of natural products, but also the discovery of new bioactive scaffolds.
Collapse
Affiliation(s)
- Jacquie L Harper
- Malaghan Institute of Medical Research, PO Box 7060 Wellington South, New Zealand.
| | - Iman M Khalil
- School of Chemical Sciences, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand.
| | - Lisa Shaw
- Malaghan Institute of Medical Research, PO Box 7060 Wellington South, New Zealand.
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France.
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France.
| | - Alexis Valentin
- Université Paul Sabatier, PHARMA-DEV, UMR 152 IRD-UPS, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France.
| | - David Barker
- School of Chemical Sciences, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand.
| |
Collapse
|
18
|
Maschke M, Grohmann J, Nierhaus C, Lieb M, Metzler-Nolte N. Peptide Bioconjugates of Electron-Poor Metallocenes: Synthesis, Characterization, and Anti-Proliferative Activity. Chembiochem 2015; 16:1333-42. [DOI: 10.1002/cbic.201500060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/16/2022]
|
19
|
Maschke M, Merz K, Shishkin OV, Zubatyuk RI, Metzler-Nolte N. Influence of chlorine substituents on the aggregation behavior of chlorobenzoyl-substituted ferrocene derivates. Struct Chem 2015. [DOI: 10.1007/s11224-015-0587-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Rapakousiou A, Deraedt C, Irigoyen J, Wang Y, Pinaud N, Salmon L, Ruiz J, Moya S, Astruc D. Synthesis and redox activity of "clicked" triazolylbiferrocenyl polymers, network encapsulation of gold and silver nanoparticles and anion sensing. Inorg Chem 2015; 54:2284-99. [PMID: 25676664 DOI: 10.1021/ic5028916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.
Collapse
Affiliation(s)
- Amalia Rapakousiou
- ISM, UMR CNRS No. 5255, Université de Bordeaux, 33405 Talence Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|