1
|
Ahmed Al-Hadhrami N, Ladwig A, Rahman A, Rozas I, Paul G Malthouse J, Evans P. Synthesis of 2-guanidinyl pyridines and their trypsin inhibition and docking. Bioorg Med Chem 2020; 28:115612. [PMID: 32690267 DOI: 10.1016/j.bmc.2020.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
A range of guanidine-based pyridines, and related compounds, have been prepared (19 examples). These compounds were evaluated in relation to their competitive inhibition of bovine pancreatic trypsin. Results demonstrate that compounds in which the guanidinyl substituent can form an intramolecular hydrogen bond (IMHB) with the pyridinyl nitrogen atom (6a-p) are better trypsin inhibitors than their counterparts (10-13) that are unable to form an IMHB. Among the compounds 6a-p, examples containing a 5-halo substituent were, generally, found to be better trypsin inhibitors. This trend was inversely related to electronegativity, thus, 1-(5-iodopyridin-2-yl)guanidinium ion 6e (Ki = 0.0151 mM) was the optimum inhibitor in the 5-halo series. Amongst the isomeric methyl substituted compounds, 1-(3-methylpyridin-2-yl)guanidinium ion 6h demonstrated optimum levels of trypsin inhibition (Ki = 0.0140 mM). In order to rationalise the measured enzyme inhibition, selected compounds were docked with bovine and human trypsin with a view to understanding active site occupancy and taken together with the Ki values the order of inhibitory ability suggests that the 5-halo 2-guanidinyl pyridine inhibitors form a halogen bond with the catalytically active serine hydroxy group.
Collapse
Affiliation(s)
- Nahlah Ahmed Al-Hadhrami
- School of Chemistry, Centre for Synthesis and Chemical Biology, University College Dublin, Dublin D04 N2E2, Ireland
| | - Angelique Ladwig
- School of Chemistry, Centre for Synthesis and Chemical Biology, University College Dublin, Dublin D04 N2E2, Ireland
| | - Adeyemi Rahman
- School of Chemistry, TBSI, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Isabel Rozas
- School of Chemistry, TBSI, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - J Paul G Malthouse
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, Conway Institute, University College Dublin, Dublin D04 N2E2, Ireland
| | - Paul Evans
- School of Chemistry, Centre for Synthesis and Chemical Biology, University College Dublin, Dublin D04 N2E2, Ireland.
| |
Collapse
|
2
|
Li C, Li W, Zhang Y, Simpson BK. Comparison of physicochemical properties of recombinant buckwheat trypsin inhibitor (rBTI) and soybean trypsin inhibitor (SBTI). Protein Expr Purif 2020; 171:105614. [PMID: 32114102 DOI: 10.1016/j.pep.2020.105614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
Abstract
The inhibitory activities of buckwheat trypsin inhibitor (rBTI) towards trypsin were compared with soybean trypsin inhibitor (SBTI) in terms of their sensitivities to temperature, pH, salt ions and organic solvents. Both rBTI and SBTI were stable over a broad pH range of 2.0-12.0. rBTI exhibited higher thermal stability than SBTI. The inhibitory activity of rBTI was decreased by Zinc ions (Zn2+), KSCN, vitamin C and urea, while that of SBTI remained unchanged. However, H2O2, Mg2+ and Cu2+ ions had no significant effects on the inhibitory activities of rBTI and SBTI. Acetonitrile enhanced the inhibitory activity of rBTI, but had no effect on SBTI, while dimethylacetamide (DMAC) increased the inhibitory effect of both rBTI and SBTI. On the contrary, the inhibitory activities of rBTI and SBTI were reduced by isopropyl alcohol and methanol. The inhibition constants Ki of rBTI and SBTI were calculated to be 7.41 × 10-9 M and 6.52 × 10-9 M, respectively.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China.
| | - Wenjie Li
- School of Life Science, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China.
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus), Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| | - Benjamin Kofi Simpson
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus), Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
3
|
Recent Developments in Peptidyl Diaryl Phoshonates as Inhibitors and Activity-Based Probes for Serine Proteases. Pharmaceuticals (Basel) 2019; 12:ph12020086. [PMID: 31185654 PMCID: PMC6631691 DOI: 10.3390/ph12020086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/12/2022] Open
Abstract
This review presents current achievements in peptidyl diaryl phosphonates as covalent, specific mechanism-based inhibitors of serine proteases. Along three decades diaryl phosphonates have emerged as invaluable tools in fundamental and applicative studies involving these hydrolases. Such an impact has been promoted by advantageous features that characterize the phosphonate compounds and their use. First, the synthesis is versatile and allows comprehensive structural modification and diversification. Accordingly, reactivity and specificity of these bioactive molecules can be easily controlled by appropriate adjustments of the side chains and the leaving groups. Secondly, the phosphonates target exclusively serine proteases and leave other oxygen and sulfur nucleophiles intact. Synthetic accessibility, lack of toxicity, and promising pharmacokinetic properties make them good drug candidates. In consequence, the utility of peptidyl diaryl phosphonates continuously increases and involves novel enzymatic targets and innovative aspects of application. For example, conjugation of the structures of specific inhibitors with reporter groups has become a convenient approach to construct activity-based molecular probes capable of monitoring location and distribution of serine proteases.
Collapse
|
4
|
Schulz-Fincke AC, Tikhomirov AS, Braune A, Girbl T, Gilberg E, Bajorath J, Blaut M, Nourshargh S, Gütschow M. Design of an Activity-Based Probe for Human Neutrophil Elastase: Implementation of the Lossen Rearrangement To Induce Förster Resonance Energy Transfers. Biochemistry 2018; 57:742-752. [PMID: 29286643 DOI: 10.1021/acs.biochem.7b00906] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human neutrophil elastase is an important regulator of the immune response and plays a role in host defense mechanisms and further physiological processes. The uncontrolled activity of this serine protease may cause severe tissue alterations and impair inflammatory states. The design of an activity-based probe for human neutrophil elastase reported herein relies on a sulfonyloxyphthalimide moiety as a new type of warhead that is linker-connected to a coumarin fluorophore. The inhibitory potency of the activity-based probe was assessed against several serine and cysteine proteases, and the selectivity for human neutrophil elastase (Ki = 6.85 nM) was determined. The adequate fluorescent tag of the probe allowed for the in-gel fluorescence detection of human neutrophil elastase in the low nanomolar range. The coumarin moiety and the anthranilic acid function of the probe, produced in the course of a Lossen rearrangement, were part of two different Förster resonance energy transfers.
Collapse
Affiliation(s)
- Anna-Christina Schulz-Fincke
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| | - Alexander S Tikhomirov
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany.,Gause Institute of New Antibiotics , 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Tamara Girbl
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , Charterhouse Square, London EC1M 6BQ, U.K
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany.,Department of Life Science Informatics, B-IT, LIMES Program Unit of Chemical Biology and Medicinal Chemistry, University of Bonn , Dahlmannstrasse 2, 53113 Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit of Chemical Biology and Medicinal Chemistry, University of Bonn , Dahlmannstrasse 2, 53113 Bonn, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , Charterhouse Square, London EC1M 6BQ, U.K
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
5
|
Marinozzi M, Pertusati F, Serpi M. λ5-Phosphorus-Containing α-Diazo Compounds: A Valuable Tool for Accessing Phosphorus-Functionalized Molecules. Chem Rev 2016; 116:13991-14055. [DOI: 10.1021/acs.chemrev.6b00373] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maura Marinozzi
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Fabrizio Pertusati
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Michaela Serpi
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
6
|
Beckmann AM, Gilberg E, Gattner S, Huang TL, Vanden Eynde JJ, Mayence A, Bajorath J, Stirnberg M, Gütschow M. Evaluation of bisbenzamidines as inhibitors for matriptase-2. Bioorg Med Chem Lett 2016; 26:3741-5. [DOI: 10.1016/j.bmcl.2016.05.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
|