1
|
Guanidine–Curcumin Complex-Loaded Amine-Functionalised Hollow Mesoporous Silica Nanoparticles for Breast Cancer Therapy. Cancers (Basel) 2022; 14:cancers14143490. [PMID: 35884549 PMCID: PMC9323383 DOI: 10.3390/cancers14143490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS analysis demonstrates that the shape of the hysteresis loops is modified and that pore volume and pore diameter are consequently decreased compared to control. Guanidine (85%) and guanidine–curcumin complex (90%) were successfully encapsulated in HMSNAP and showed a 90% effective and sustained release at pH 7.4 for up to 72 h. Acridine orange/ethidium bromide dual staining determined that GuC-HMNSAP induced more late apoptosis and necrosis at 48 and 72 h compared with Gu-HMNSAP-treated cells. Molecular investigation of guanidine-mediated apoptosis was analysed using western blotting. It was found that cleaved caspases, c-PARP, and GSK-3β (Ser9) had increased activity in MCF-7 cells. GuC-HMSNAP increased the activity of phosphorylation of oncogenic proteins such as Akt (Ser473), c-Raf (Ser249), PDK1 (Ser241), PTEN (Ser380), and GSK-3β (Ser9), thus inducing cell death in MCF-7 cells. Altogether, our findings confirm that GuC-HMNSAP induces cell death by precisely associating with tumour-suppressing proteins, which may lead to new therapeutic approaches for breast cancer therapy.
Collapse
|
2
|
Sujai PT, Joseph MM, Karunakaran V, Saranya G, Adukkadan RN, Shamjith S, Thomas R, Nair JB, Swathi RS, Maiti KK. Biogenic Cluster-Encased Gold Nanorods as a Targeted Three-in-One Theranostic Nanoenvelope for SERS-Guided Photochemotherapy against Metastatic Melanoma. ACS APPLIED BIO MATERIALS 2018; 2:588-600. [DOI: 10.1021/acsabm.8b00746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Palasseri T. Sujai
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Manu M. Joseph
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ramya N. Adukkadan
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Shanmughan Shamjith
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Reshmi Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura 695551, Thiruvananthapuram, India
| | - Jyothi B. Nair
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura 695551, Thiruvananthapuram, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
3
|
Vieira Gonzaga R, da Silva Santos S, da Silva JV, Campos Prieto D, Feliciano Savino D, Giarolla J, Igne Ferreira E. Targeting Groups Employed in Selective Dendrons and Dendrimers. Pharmaceutics 2018; 10:E219. [PMID: 30413047 PMCID: PMC6320891 DOI: 10.3390/pharmaceutics10040219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
The design of compounds with directed action to a defined organ or tissue is a very promising approach, since it can decrease considerably the toxicity of the drug/bioactive compound. For this reason, this kind of strategy has been greatly important in the scientific community. Dendrimers, on the other hand, comprise extremely organized macromolecules with many peripheral functionalities, stepwise controlled synthesis, and defined size. These nanocomposites present several biological applications, demonstrating their efficiency to act in the pharmaceutical field. Considering that, the main purpose of this review was describing the potential of dendrons and dendrimers as drug targeting, applying different targeting groups. This application has been demonstrated through interesting examples from the literature considering the last ten years of publications.
Collapse
Affiliation(s)
- Rodrigo Vieira Gonzaga
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Soraya da Silva Santos
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Joao Vitor da Silva
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Diego Campos Prieto
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | | | - Jeanine Giarolla
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | | |
Collapse
|
4
|
Padinjarathil H, Joseph MM, Unnikrishnan B, Preethi G, Shiji R, Archana M, Maya S, Syama H, Sreelekha T. Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. Int J Biol Macromol 2018; 118:1174-1182. [DOI: 10.1016/j.ijbiomac.2018.06.194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 12/17/2022]
|
5
|
Kamath PR, Sunil D, Joseph MM, Abdul Salam AA, T.T. S. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur J Med Chem 2017; 136:442-451. [DOI: 10.1016/j.ejmech.2017.05.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023]
|
6
|
Ramya AN, Joseph MM, Maniganda S, Karunakaran V, T T S, Maiti KK. Emergence of Gold-Mesoporous Silica Hybrid Nanotheranostics: Dox-Encoded, Folate Targeted Chemotherapy with Modulation of SERS Fingerprinting for Apoptosis Toward Tumor Eradication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28671767 DOI: 10.1002/smll.201700819] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/03/2017] [Indexed: 05/09/2023]
Abstract
Strategically fabricated theranostic nanocarrier delivery system is an unmet need in personalized medicine. Herein, this study reports a versatile folate receptor (FR) targeted nanoenvelope delivery system (TNEDS) fabricated with gold core silica shell followed by chitosan-folic acid conjugate surface functionalization by for precise loading of doxorubicin (Dox), resembled as Au@SiO2 -Dox-CS-FA. TNEDS possesses up to 90% Dox loading efficiency and internalized through endocytosis pathway leading to pH and redox-sensitive release kinetics. The superior FR-targeted cytotoxicity is evaluated by the nanocarrier in comparison with US Food and Drug Administration (FDA)-approved liposomal Dox conjugate, Lipodox. Moreover, TNEDS exhibits theranostic features through caspase-mediated apoptosis and envisages high surface plasmon resonance enabling the nanoconstruct as a promising surface enhanced Raman scattering (SERS) nanotag. Minuscule changes in the biochemical components inside cells exerted by the TNEDS along with the Dox release are evaluated explicitly in a time-dependent fashion using bimodal SERS/fluorescence nanoprobe. Finally, TNEDS displays superior antitumor response in FR-positive ascites as well as solid tumor syngraft mouse models. Therefore, this futuristic TNEDS is expected to be a potential alternative as a clinically relevant theranostic nanomedicine to effectively combat neoplasia.
Collapse
Affiliation(s)
- Adukkadan N Ramya
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Manu M Joseph
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Laboratory of Biopharmaceutics and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala, 695011, India
| | - Santhi Maniganda
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Sreelekha T T
- Laboratory of Biopharmaceutics and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala, 695011, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| |
Collapse
|
7
|
Retracted
: Bisindole-oxadiazole hybrids, T3P mediated®
-synthesis and appraisal of their apoptotic, antimetastatic and computational Bcl-2 binding potential. J Biochem Mol Toxicol 2017; 31. [PMID: 28724188 DOI: 10.1002/jbt.21962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
|
8
|
Joseph MM, Nair JB, Adukkadan RN, Hari N, Pillai RK, Nair AJ, Maiti KK, Therakathinal T S. Exploration of Biogenic Nano-chemobiotics Fabricated by Silver Nanoparticle and Galactoxyloglucan with an Efficient Biodistribution in Solid Tumor Investigated by SERS Fingerprinting. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19578-19590. [PMID: 28534412 DOI: 10.1021/acsami.7b03191] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An incredible exploration ensued of a dual modality nanocomposite wherein chemotherapy in fusion with antibacterial efficacy is obtained in a biogenic fabrication, which transformed as a novel nano-chemobiotics (NCB) prevailing fundamental molecular level investigation by surface-enhanced Raman scattering (SERS) platform. The nanocomposite is a facile, robust, and ecofriendly constitution between silver nanoparticles (SNPs) and a naturally occurring galactoxyloglucan (PST001) denoted as SNP@PST, which displayed biocompatibility with an upgraded selective cytotoxicity toward cancer cells. The relatively nontoxic nature of the SNP@PST on normal cells and red blood cells was further proved by detailed toxicological profiling on BALB/c mice. As a unique outcome, we observed excellent antibacterial activity, which is complementary to the greater cytotoxicity by the NCB. In diagnostic aspect, SNP@PST was revealed to be a superior SERS substrate with multiscale Raman signal enhancement contributed by homogeneous hot-spot distribution. Finally, the inherent SERS feature enabled us to investigate the biodistribution of the NCB in tumor-challenged mice using Raman fingerprinting and mapping analysis. Hence, the unrevealed SNP@PST orchestrated with the surfactant-free green method resembled a potential theransonstic NCB construct with synergistic anticancer and antibacterial potential in a single platform.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram, 695019, Kerala, India
| | - Jyothi B Nair
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ramya N Adukkadan
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Neethu Hari
- Department of Biotechnology, University of Kerala , Thiruvananthapuram, 695581, Kerala, India
| | | | - Ananthakrishnan J Nair
- Department of Biotechnology, University of Kerala , Thiruvananthapuram, 695581, Kerala, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | |
Collapse
|
9
|
Dutta D, Alex SM, Bobba KN, Maiti KK, Bhuniya S. New Insight into a Cancer Theranostic Probe: Efficient Cell-Specific Delivery of SN-38 Guided by Biotinylated Poly(vinyl alcohol). ACS APPLIED MATERIALS & INTERFACES 2016; 8:33430-33438. [PMID: 27960424 DOI: 10.1021/acsami.6b10580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An optically modulated "turn-on" theranostic prodrug TP1 has been explored and formulated with biotinylated poly(vinyl alcohol) (biotinPVA) to obtain desired pharmacokinetics. TP1, consisting of the antineoplastic camptothecin analogue SN-38, and the fluorescent dye rhodol green have been covalently conjugated through a disulfide bond. Glutathione triggering the release of drug and fluorophore has been well established by UV-vis measurements through mass spectral analysis in physiological conditions. The biocompatible biotinPVA formulated prodrug (PTP1) showed remarkably higher stability against blood serum and cell-specific activation in contrast to that of TP1. Significantly, PTP1 permits monitoring of the delivery and release of well-known topoisomerase I inhibitor SN-38 by modulating fluorescence signal at λem 550 nm within intracellular milieus. Moreover, theranostic probe PTP1 exhibited dose-dependent antiproliferative activity against receptor-positive HeLa cells, whereas it did not show such an effect against receptor-negative NIH3T3 cells. Finally, the cell-specific antiproliferative activity of PTP1 via the apoptotic pathway is an efficient approach in cancer theranostics. Thus, futuristic PTP1 could be a promising agent in which diagnostic and prognostic data will be monitored synergistically.
Collapse
Affiliation(s)
- Debabrata Dutta
- Amrita Centre for Industrial Research and Innovation, Amrita School of Engineering, Amrita University , Coimbatore 64112, India
| | - Susan M Alex
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Kondapa Naidu Bobba
- Amrita Centre for Industrial Research and Innovation, Amrita School of Engineering, Amrita University , Coimbatore 64112, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research, AcSIR, CSIR-NIIST , Thiruvananthapuram, Kerala 695019, India
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research and Innovation, Amrita School of Engineering, Amrita University , Coimbatore 64112, India
- Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Amrita University , Coimbatore 641112, India
| |
Collapse
|
10
|
Rostami I, Zhao Z, Wang Z, Zhang W, Zhong Y, Zeng Q, Jia X, Hu Z. Peptide-conjugated PEGylated PAMAM as a highly affinitive nanocarrier towards HER2-overexpressing cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra19552k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient drug delivery to the tumor cells was carried out with HER2 targeting peptide-conjugated PEGlyted PAMAM.
Collapse
Affiliation(s)
- Iman Rostami
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - ZiJian Zhao
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - ZiHua Wang
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - WeiKai Zhang
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Henan University of Science & Technology
| | - Yeteng Zhong
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qiang Zeng
- Health Management Institute
- Chinese PLA General Hospital
- China
| | - XinRu Jia
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - ZhiYuan Hu
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Institute for Systems Biology
| |
Collapse
|