1
|
Meguro M, Miyauchi S, Kanao-Arisumi Y, Naito S, Suzuki K, Inoue S, Yamada K, Homma T, Chiba K, Nara F, Furuzono S. Identification of sulfonylpyrimidines as novel selective aldosterone synthase (CYP11B2) inhibitors. Bioorg Med Chem 2024; 108:117775. [PMID: 38851000 DOI: 10.1016/j.bmc.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
4-[(5-[2-Methyl-5-(methylsulfonyl)pentan-2-yl]sulfonylpyrimidin-4-yl)amino]benzonitrile 2 was identified as a novel potent aldosterone synthase inhibitor. Compound 2 was found to inhibit human CYP11B2 in the nanomolar range, and showed an aldosterone-lowering effect in a furosemide-treated cynomolgus monkey model. Although human CYP11B2 has the high homology sequence with human CYP11B1, compound 2 showed more than 80 times higher selectivity over human CYP11B1 in vitro.
Collapse
Affiliation(s)
- Masaki Meguro
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Satoru Miyauchi
- Technology Division, Technology Business Management Group, Daiichi Sankyo Co., Ltd., 1-12-1, Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Yukiko Kanao-Arisumi
- Pharmaunion Co., Ltd., 1-23-39 Hiikawa, Jounan-ku, Fukuoka-shi, Fukuoka 814-0153, Japan
| | - Satoru Naito
- Site Operations Department, Shinagawa Site Operation Group, Daiichi Sankyo Business Associe Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kanae Suzuki
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shinichi Inoue
- Daiichi Sankyo Inc., 211 Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | - Keisuke Yamada
- Medical Affairs Division, Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., 3-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8426, Japan
| | - Tsuyoshi Homma
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Chiba
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Futoshi Nara
- Shin Nippon Biomedical Laboratories, Ltd., 8-1-28, Akashicho, Chuo-ku, Tokyo 104-0044, Japan
| | - Shinji Furuzono
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
2
|
Wei W, Xu Q, Wu L, Gong G, Tian Y, Huang H, Li Z. Drug development and potential targets for Cushing's syndrome. Eur J Med Chem 2024; 270:116333. [PMID: 38569434 DOI: 10.1016/j.ejmech.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Cushing's syndrome (CS) is a complex disorder characterized by the excessive secretion of cortisol, with Cushing's disease (CD), particularly associated with pituitary tumors, exhibiting heightened morbidity and mortality. Although transsphenoidal pituitary surgery (TSS) stands as the primary treatment for CD, there is a crucial need to optimize patient prognosis. Current medical therapy serves as an adjunctive measure due to its unsatisfactory efficacy and unpredictable side effects. In this comprehensive review, we delve into recent advances in understanding the pathogenesis of CS and explore therapeutic options by conducting a critical analysis of potential drug targets and candidates. Additionally, we provide an overview of the design strategy employed in previously reported candidates, along with a summary of structure-activity relationship (SAR) analyses and their biological efficacy. This review aims to contribute valuable insights to the evolving landscape of CS research, shedding light on potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Wei Wei
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qianqian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Liuyi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Guangyue Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Huidan Huang
- Center of Drug Screening & Evaluation, Wannan Medical College, Wuhu, Anhui, 241000, PR China.
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
4
|
Benzophenones as xanthone-open model CYP11B1 inhibitors potentially useful for promoting wound healing. Bioorg Chem 2019; 86:401-409. [DOI: 10.1016/j.bioorg.2019.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|
5
|
Drifting of heme-coordinating group in imidazolylmethylxanthones leading to improved selective inhibition of CYP11B1. Eur J Med Chem 2017; 139:60-67. [DOI: 10.1016/j.ejmech.2017.07.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
|
6
|
Meguro M, Miyauchi S, Kanao Y, Naito S, Suzuki K, Inoue S, Yamada K, Homma T, Chiba K, Nara F, Furuzono S. 4-Anilino-pyrimidine, novel aldosterone synthase (CYP11B2) inhibitors bearing pyrimidine structures. Bioorg Med Chem Lett 2017; 27:1902-1906. [DOI: 10.1016/j.bmcl.2017.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 01/20/2023]
|