1
|
Zhang K, Gao J, Lu T, Wang Y, Zhang J, An J, Xu H. Evolution of microbial community and resistance genes in denitrification system under single and combined exposure to benzethonium chloride and methylparaben. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136010. [PMID: 39357349 DOI: 10.1016/j.jhazmat.2024.136010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Benzethonium chloride (BZC) and methylparaben (MeP) are commonly added into cosmetics as preservatives, which are frequently detected in wastewater treatment plants. Different response patterns of denitrification system were proposed under single and combined exposure to BZC and MeP (0, 0.5, 5 mg/L) by evaluating system performance, functional genes, extracellular polymeric substance (EPS), cytotoxicity, microbial community structure and resistance genes (RGs). The inhibition effect of BZC on denitrification system was stronger than MeP, and the co-exposure of BZC and MeP showed synergistic effect, enhancing the inhibition effect of BZC single exposure. BZC and/or MeP could promote the diffusion of RGs in sludge, including intracellular RGs (si-RGs) and extracellular RGs (se-RGs). Moreover, the single exposure of BZC and co-exposure of BZC and MeP increased the dissemination risks of RGs in water (w-RGs). IntI1 and tnpA-04, mobile genetic elements (MGEs), correlated positively with diverse RGs from different fractions. Notably, the spread of RGs through horizontal gene transfer mediated by MGEs and the flow of si-RGs into extracellular and water were observed in this study.
Collapse
Affiliation(s)
- Ke Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Tianyi Lu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxuan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jinming Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiawen An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Bacchetti F, Schito AM, Milanese M, Castellaro S, Alfei S. Anti Gram-Positive Bacteria Activity of Synthetic Quaternary Ammonium Lipid and Its Precursor Phosphonium Salt. Int J Mol Sci 2024; 25:2761. [PMID: 38474008 DOI: 10.3390/ijms25052761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.
Collapse
Affiliation(s)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sara Castellaro
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
3
|
Li Y, Li B, Guo X, Wang H, Cheng L. Applications of quaternary ammonium compounds in the prevention and treatment of oral diseases: State-of-the-art and future directions. J Dent 2023; 137:104678. [PMID: 37634613 DOI: 10.1016/j.jdent.2023.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVES The aim of this review is to comprehensively summarize the state-of-the-art developments of quaternary ammonium compounds (QACs) in the prevention and treatment of oral diseases. By discussing the structural diversity and the potential killing mechanism, we try to offer some insights for the future research of QACs. DATA, SOURCES & STUDY SELECTION A literature search was conducted in electronic databases (Web of Science, PubMed, Medline, and Scopus). Publications that involved the applications of QACs, especially those related to the prevention and treatment of oral diseases, are included. RESULTS We have reviewed the relevant research on QACs over the past two decades. The research results indicate that the current applications are mainly focused on dental material modification and direct pharmacological interventions. Concurrently, challenges such as potential risks to normal tissues and impediments in drug resistance and microbial persistence present certain application constraints. The latest studies have encompassed the exploration of smart materials and nanoparticle formulations. CONCLUSIONS The killing mechanism may possess a threshold related to charge density. However, the exact process remains enigmatic. The structural diversity and the exploration of intelligent materials and nanoparticle formulations provide directions in development of novel QACs. CLINICAL SIGNIFICANCE The intricate oral anatomy, combined with the multifaceted oral microbiome, necessitates specialized materials for the targeted prevention and treatment of oral pathologies. QACs represent a cohort of compounds distinguished by potent anti-infective and anti-tumor attributes. Innovations in intelligent materials and nanoparticle formulations amplify their potential in significantly advancing the prevention and therapeutic interventions for oral diseases.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Frolov NA, Seferyan MA, Valeev AB, Saverina EA, Detusheva EV, Vereshchagin AN. The Antimicrobial and Antibiofilm Potential of New Water-Soluble Tris-Quaternary Ammonium Compounds. Int J Mol Sci 2023; 24:10512. [PMID: 37445691 DOI: 10.3390/ijms241310512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The invention and innovation of highly effective antimicrobials are always crucial tasks for medical and organic chemistry, especially at the current time, when there is a serious threat of shortages of effective antimicrobials following the pandemic. In the study presented in this article, we established a new approach to synthesizing three novel series of bioactive water-soluble tris-quaternary ammonium compounds using an optimized one-pot method, and we assessed their antimicrobial and antibiofilm potential. Five pathogenic microorganisms of the ESKAPE group, including highly resistant clinical isolates, were used as the test samples. Moreover, we highlighted the dependence of antibacterial activity from the hydrophilic-hydrophobic balance of the QACs and noted the significant performance of the desired products on biofilms with MBEC as low as 16 mg/L against bacteria and 8 mg/L against fungi. Particularly notable was the high activity against Pseudomonas aeruginosa and Acinetobacter baumannii, which are among the most resilient bacteria known. The presented work will provide useful insights for future research on the topic.
Collapse
Affiliation(s)
- Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anvar B Valeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin Prospect. 92, 300012 Tula, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
5
|
Seferyan MA, Saverina EA, Frolov NA, Detusheva EV, Kamanina OA, Arlyapov VA, Ostashevskaya II, Ananikov VP, Vereshchagin AN. Multicationic Quaternary Ammonium Compounds: A Framework for Combating Bacterial Resistance. ACS Infect Dis 2023; 9:1206-1220. [PMID: 37161274 DOI: 10.1021/acsinfecdis.2c00546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens. Here, we introduce an original isocyanuric acid alkylation method with the use of available alkyl dichlorides, which opened access to a wide panel of multi-QACs with alkyl chains of various lengths between the nitrogen atoms of triazine and pyridine cycles. We used a complex approach for the resulting series of 17 compounds, including their antibiofilm properties, bacterial tolerance development, and antimicrobial activity toward multiresistant pathogenic strains. As a result of these efforts, available compounds have shown higher levels of antibacterial activity against ESKAPE pathogens than widely used commercial QACs. Hit compounds possessed high activity toward clinical bacterial strains and have also demonstrated a long-term biocidal effect without significant development of microorganism tolerance. The overall results indicated a high level of antibacterial activity and the broad application prospects of multi-QACs based on isocyanuric acid against multiresistant bacterial strains.
Collapse
Affiliation(s)
- Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Tula State University, Lenin pr. 92, 300012 Tula, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov, Moscow Region, Russia
| | | | | | - Irina I Ostashevskaya
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | | |
Collapse
|
6
|
Michaud ME, Allen RA, Morrison-Lewis KR, Sanchez CA, Minbiole KPC, Post SJ, Wuest WM. Quaternary Phosphonium Compound Unveiled as a Potent Disinfectant against Highly Resistant Acinetobacter baumannii Clinical Isolates. ACS Infect Dis 2022; 8:2307-2314. [PMID: 36301313 DOI: 10.1021/acsinfecdis.2c00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acinetobacter baumannii is classified as a highest threat pathogen, urgently necessitating novel antimicrobials that evade resistance to combat its spread. Quaternary ammonium compounds (QACs) have afforded a valuable first line of defense against antimicrobial resistant pathogens as broad-spectrum amphiphilic disinfectant molecules. However, a paucity of innovation in this space has driven the emergence of QAC resistance. Through this work, we sought to identify next-generation disinfectant molecules with efficacy against highly resistant A. baumannii clinical isolates. We selected 12 best-in-class molecules from our previous investigations of quaternary ammonium and quaternary phosphonium compounds (QPCs) to test against a panel of 35 resistant A. baumannii clinical isolates. The results highlighted the efficacy of our next-generation compounds over leading commercial QACs, with our best-in-class QAC (2Pyr-11,11) and QPC (P6P-10,10) displaying improved activities with a few exceptions. Furthermore, we elucidated a correlation between colistin resistance and QAC resistance, wherein the only pan-resistant isolate of the panel, also harboring colistin resistance, exhibited resistance to all tested QACs. Notably, P6P-10,10 maintained efficacy against this strain with an IC90 of 3 μM. In addition, P6P-10,10 displayed minimum biofilm eradication concentrations as low as 32 μM against extensively drug resistant clinical isolates. Lastly, examining the development of disinfectant resistance and cross-resistance, we generated QAC-resistant A. baumannii mutants and observed the development of QAC cross-resistance. In contrast, neither disinfectant resistance nor cross-resistance was observed in A. baumannii under P6P-10,10 treatment. Taken together, the results of this work illustrate the need for novel disinfectant compounds to treat resistant pathogens, such as A. baumannii, and underscore the promise of QPCs, such as P6P-10,10, as viable next-generation disinfectant molecules.
Collapse
Affiliation(s)
- Marina E Michaud
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A Allen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Christian A Sanchez
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Savannah J Post
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Dan W, Gao J, Qi X, Wang J, Dai J. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur J Med Chem 2022; 243:114765. [PMID: 36116235 DOI: 10.1016/j.ejmech.2022.114765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Bacterial infections have seriously threatened public health especially with the increasing resistance and the cliff-like decline of the number of newly approved antibacterial agents. Quaternary ammonium compounds (QACs) possess potent medicinal properties with 95 successfully marketed drugs, which also have a long history as antibacterial agents. In this review, we summarize the chemical diversity of antibacterial QACs, divided into chain-like and aromatic ring, reported over the past decade (2012 to mid-2022). Additionally, the structure-activity relationships, mainly covering hydrophobicity, charges and skeleton features, are discussed. In the cases where sufficient information is available, antibacterial mechanisms including biofilm, cell membrane, and intracellular targets are presented. It is hoped that this review will provide sufficient information for medicinal chemists to discover the new generation of antibacterial agents based on QACs.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Xiaohui Qi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| |
Collapse
|
8
|
Crnčević D, Krce L, Cvitković M, Brkljača Z, Sabljić A, Vuko E, Primožič I, Odžak R, Šprung M. New Membrane Active Antibacterial and Antiviral Amphiphiles Derived from Heterocyclic Backbone of Pyridinium-4-Aldoxime. Pharmaceuticals (Basel) 2022; 15:ph15070775. [PMID: 35890073 PMCID: PMC9315884 DOI: 10.3390/ph15070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Quaternary ammonium salts (QAS) are irreplaceable membrane-active antimicrobial agents that have been widely used for nearly a century. Cetylpyridinium chloride (CPC) is one of the most potent QAS. However, recent data from the literature indicate that CPC activity against resistant bacterial strains is decreasing. The major QAS resistance pathway involves the QacR dimer, which regulates efflux pump expression. A plausible approach to address this issue is to structurally modify the CPC structure by adding other biologically active functional groups. Here, a series of QAS based on pyridine-4-aldoxime were synthesized, characterized, and tested for antimicrobial activity in vitro. Although we obtained several potent antiviral candidates, these candidates had lower antibacterial activity than CPC and were not toxic to human cell lines. We found that the addition of an oxime group to the pyridine backbone resulted in derivatives with large topological polar surfaces and with unfavorable cLog P values. Investigation of the antibacterial mode of action, involving the cell membrane, revealed altered cell morphologies in terms of corrugated and/or disrupted surface, while 87% of the cells studied exhibited a permeabilized membrane after 3 h of treatment at 4 × minimum inhibitory concentration (MIC). Molecular dynamic (MD) simulations of the interaction of QacR with a representative candidate showed rapid dimer disruption, whereas this was not observed for QacR and QacR bound to the structural analog CPC. This might explain the lower bioactivity of our compounds, as they are likely to cause premature expression of efflux pumps and thus activation of resistance.
Collapse
Affiliation(s)
- Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (L.K.); (M.C.)
| | - Mislav Cvitković
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (L.K.); (M.C.)
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10 000 Zagreb, Croatia;
- Selvita Ltd., Prilaz Baruna Filipovića 29, 10 000 Zagreb, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia
| | - Elma Vuko
- Department of Biology, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia;
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia;
| | - Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Correspondence: (R.O.); (M.Š.)
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Correspondence: (R.O.); (M.Š.)
| |
Collapse
|
9
|
Sommers KJ, Michaud ME, Hogue CE, Scharnow AM, Amoo LE, Petersen AA, Carden RG, Minbiole KPC, Wuest WM. Quaternary Phosphonium Compounds: An Examination of Non-Nitrogenous Cationic Amphiphiles That Evade Disinfectant Resistance. ACS Infect Dis 2022; 8:387-397. [PMID: 35077149 PMCID: PMC8996050 DOI: 10.1021/acsinfecdis.1c00611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quaternary ammonium compounds (QACs) serve as mainstays in the formulation of disinfectants and antiseptics. However, an over-reliance and misuse of our limited QAC arsenal has driven the development and spread of resistance to these compounds, as well as co-resistance to common antibiotics. Extensive use of these compounds throughout the COVID-19 pandemic thus raises concern for the accelerated proliferation of antimicrobial resistance and demands for next-generation antimicrobials with divergent architectures that may evade resistance. To this end, we endeavored to expand beyond canonical ammonium scaffolds and examine quaternary phosphonium compounds (QPCs). Accordingly, a synthetic and biological investigation into a library of novel QPCs unveiled biscationic QPCs to be effective antimicrobial scaffolds with improved broad-spectrum activities compared to commercial QACs. Notably, a subset of these compounds was found to be less effective against a known QAC-resistant strain of MRSA. Bioinformatic analysis revealed the unique presence of a family of small multiresistant transporter proteins, hypothesized to enable efflux-mediated resistance to QACs and QPCs. Further investigation of this resistance mechanism through efflux-pump inhibition and membrane depolarization assays illustrated the superior ability of P6P-10,10 to perturb the cell membrane and exert the observed broad-spectrum potency compared to its commercial counterparts. Collectively, this work highlights the promise of biscationic phosphonium compounds as next-generation disinfectant molecules with potent bioactivities, thereby laying the foundation for future studies into the synthesis and biological investigation of this nascent antimicrobial class.
Collapse
Affiliation(s)
| | | | - Cody E. Hogue
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Amber M. Scharnow
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lauren E. Amoo
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Ashley A. Petersen
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Robert G. Carden
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Kevin P. C. Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Morandini A, Leonetti B, Riello P, Sole R, Gatto V, Caligiuri I, Rizzolio F, Beghetto V. Synthesis and Antimicrobial Evaluation of Bis-morpholine Triazine Quaternary Ammonium Salts. ChemMedChem 2021; 16:3172-3176. [PMID: 34288499 PMCID: PMC8596621 DOI: 10.1002/cmdc.202100409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Indexed: 11/07/2022]
Abstract
Efficient, environmentally and economically sustainable, and nontoxic antibacterial products are of global relevance in the fight against microorganism contamination. In this work, an easy and straightforward method for the synthesis of bis-morpholino triazine quaternary ammonium salts (bis-mTQAS) is reported, starting from 2,4,6-trichloro-1,3,5-triazine or 2,4-dichloro-6-methoxy-1,3,5-triazine and various N-alkylmorpholines. Bis-mTQAS were tested as antimicrobials against Gram-negative and Gram-positive bacterial strains. The best-performing bis-mTQAS were found to achieve total disinfection against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 at 50 and 400 μg/mL, respectively. Distinctively, bis-mTQAS with the highest antimicrobial efficiency had lowest cytotoxicity.
Collapse
Affiliation(s)
- Andrea Morandini
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di VeneziaVia Torino 15530172Venezia MestreItaly
| | - Benedetta Leonetti
- Brenta S.r.l. – Nine trees groupViale Milano 2636075Montecchio MaggioreVicenzaItaly
| | - Pietro Riello
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di VeneziaVia Torino 15530172Venezia MestreItaly
- European Centre for Living Technology (ECLT) Ca' BottacinDorsoduro 391130123VeniceItaly
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di VeneziaVia Torino 15530172Venezia MestreItaly
- CIRCCVia C. Ulpiani 2770126BariItaly
| | - Vanessa Gatto
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di VeneziaVia Torino 15530172Venezia MestreItaly
- Crossing S.r.l.Viale della Repubblica 193/b31100TrevisoItaly
| | - Isabella Caligiuri
- Pathology UnitCentro di Riferimento Oncologico (CRO) IRCCSVia F. Gallini 233081AvianoItaly
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di VeneziaVia Torino 15530172Venezia MestreItaly
- Pathology UnitCentro di Riferimento Oncologico (CRO) IRCCSVia F. Gallini 233081AvianoItaly
| | - Valentina Beghetto
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di VeneziaVia Torino 15530172Venezia MestreItaly
- Crossing S.r.l.Viale della Repubblica 193/b31100TrevisoItaly
| |
Collapse
|
11
|
Morandini A, Spadati E, Leonetti B, Sole R, Gatto V, Rizzolio F, Beghetto V. Sustainable triazine-derived quaternary ammonium salts as antimicrobial agents. RSC Adv 2021; 11:28092-28096. [PMID: 35480717 PMCID: PMC9038131 DOI: 10.1039/d1ra03455c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
The first examples of highly efficient antimicrobial triazine-derived bis imidazolium quaternary ammonium salts (TQAS) are reported. TQAS have been prepared with an easy, atom efficient, economically sustainable strategy and tested as antimicrobial agents, reaching MIC values below 10 mg L-1. Distinctively, TQAS have low MIC and low cytotoxicity.
Collapse
Affiliation(s)
- Andrea Morandini
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Emanuele Spadati
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Benedetta Leonetti
- Brenta S.r.l. - Nine Trees Group. Viale Milano, 26 36075 Montecchio Maggiore Vicenza Italy
| | - Roberto Sole
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
- Consorzio Interuniversitario per le Reattività Chimiche e Catalisi (CIRCC) Via C. Ulpiani 27 70126 Bari Italy
| | - Vanessa Gatto
- Crossing S.r.l. Viale della Repubblica 193/b Treviso 31100 Italy
| | - Flavio Rizzolio
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Valentina Beghetto
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
- Crossing S.r.l. Viale della Repubblica 193/b Treviso 31100 Italy
| |
Collapse
|
12
|
Wang X, Bittner T, Milanov M, Kaul L, Mundinger S, Koch HG, Jessen-Trefzer C, Jessen HJ. Pyridinium Modified Anthracenes and Their Endoperoxides Provide a Tunable Scaffold with Activity against Gram-Positive and Gram-Negative Bacteria. ACS Infect Dis 2021; 7:2073-2080. [PMID: 34291902 DOI: 10.1021/acsinfecdis.1c00263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the emergence of multidrug resistant bacteria, the development of new antibiotics is required. We introduce here asymmetrically modified positively charged bis(methylpyridinium) anthracenes as a novel tunable scaffold, in which the two positive charges can be placed at a defined distance and angle. Our structure-activity relationship reveals that coupling the methylpyridiniums with alkynyl linkers to the central anthracene unit yields antibacterial compounds against a wide range of bacteria, including Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. Also, different mycobacteria, such as Mycobacterium smegmatis and Mycobacterium tuberculosis, are efficiently targeted by these compounds. The antibacterial activity depends on the number of alkynyl linkers and consequently also on the distance of the positive charges in the rigid anthracene scaffold. Additionally, the formation of an anthracene endoperoxide further increases the antibacterial activity, likely due to the release of toxic singlet oxygen that converts the endoperoxide back to the antibacterial anthracene scaffold with half-lives of several hours.
Collapse
Affiliation(s)
- Xuan Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Tamara Bittner
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Laurine Kaul
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, 79104 Freiburg, Germany
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Stephan Mundinger
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Frolov NA, Fedoseeva KA, Hansford KA, Vereshchagin AN. Novel Phenyl-Based Bis-quaternary Ammonium Compounds as Broad-Spectrum Biocides. ChemMedChem 2021; 16:2954-2959. [PMID: 34252992 DOI: 10.1002/cmdc.202100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Herein we report the synthesis and microbiological evaluation of novel phenyl based bis-quaternary ammonium compounds (bis-QACs). Using a simple 2-step synthetic route from dibromo- and dihydroxybenzenes, we obtained a structurally diverse broad panel of bis-QACs with topologically distinct bridging connections between pyridinium heads. Selected analogs possessed potent broad-spectrum biocidal activity against both bacterial and fungal pathogens: methicillin-resistant Staphylococcus aureus (ATCC 43300); Escherichia coli (ATCC 25922), Klebsiella pneumonia (ATCC 700603), Acinetobacter baumannii (ATCC 19606), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (ATCC 90028), Cryptococcus neoformans var. grubii (ATCC 208821). Promising compounds displayed minimum inhibitory concentrations (MIC) values ≤0.25 μg/mL alongside improved cytotoxicity and hemolytic profiles compared to modern antiseptics. Thus, synthesized bis-QACs represent a promising class of biocides with the potential to replace existing household sanitizers.
Collapse
Affiliation(s)
- Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Ksenia A Fedoseeva
- Mendeleev University of Chemical Technology of Russia, 125047, Miusskaya square 9, Moscow, Russian Federation
| | - Karl A Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| |
Collapse
|
14
|
Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22:6793. [PMID: 34202677 PMCID: PMC8268321 DOI: 10.3390/ijms22136793] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure-quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.
Collapse
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| | | | | | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| |
Collapse
|
15
|
Vereshchagin AN, Frolov NA, Minaeva AP, Detusheva EV, Derkach YV, Egorov MP. Synthesis and biological evaluation of novel cyanuric acid-tethered tris-pyridinium derivatives. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Vereshchagin AN, Frolov NA, Minaeva AP, Detusheva EV, Derkach YV, Egorov MP. Synthesis and biological evaluation of novel cyanuric acid-tethered tris-pyridinium derivatives. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Vereshchagin AN, Minaeva AP, Egorov MP. Synthesis and antibacterial activity of new tetrakisquaternary ammonium compounds based on pentaerythritol and 3-hydroxypyridine. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3122-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Sommers KJ, Bentley BS, Carden RG, Post SJ, Allen RA, Kontos RC, Black JW, Wuest WM, Minbiole KPC. Metallocene QACs: The Incorporation of Ferrocene Moieties into monoQAC and bisQAC Structures. ChemMedChem 2020; 16:467-471. [PMID: 33197298 DOI: 10.1002/cmdc.202000605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Indexed: 01/12/2023]
Abstract
Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene-containing mono- and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram-negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single-digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.
Collapse
Affiliation(s)
- Kyle J Sommers
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Brian S Bentley
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Robert G Carden
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Savannah J Post
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Ryan A Allen
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Renee C Kontos
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Jacob W Black
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
19
|
Carden RG, Sommers KJ, Schrank CL, Leitgeb AJ, Feliciano JA, Wuest WM, Minbiole KPC. Advancements in the Development of Non-Nitrogen-Based Amphiphilic Antiseptics to Overcome Pathogenic Bacterial Resistance. ChemMedChem 2020; 15:1974-1984. [PMID: 32886856 PMCID: PMC8371456 DOI: 10.1002/cmdc.202000612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/23/2022]
Abstract
The prevalence of quaternary ammonium compounds (QACs) as common disinfecting agents for the past century has led bacteria to develop resistance to such compounds. Given the alarming increase in resistant strains, new strategies are required to combat this rise in resistance. Recent efforts to probe and combat bacterial resistance have focused on studies of multiQACs. Relatively unexplored, however, have been changes to the primary atom bearing positive charge in these antiseptics. Here we review the current state of the field of both phosphonium and sulfonium amphiphilic antiseptics, both of which hold promise as novel means to address bacterial resistance.
Collapse
Affiliation(s)
- Robert G Carden
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Kyle J Sommers
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | | | - Austin J Leitgeb
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Javier A Feliciano
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
20
|
The wide-spectrum antimicrobial effect of novel N-alkyl monoquaternary ammonium salts and their mixtures; the QSAR study against bacteria. Eur J Med Chem 2020; 206:112584. [PMID: 32853858 DOI: 10.1016/j.ejmech.2020.112584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/14/2020] [Indexed: 11/23/2022]
Abstract
Quaternary ammonium salts (QASs) have been widely used for disinfection purposes because of their low price, high efficacy and low human toxicity for decades. However, precise mechanisms of action nor the powerful versatile agent against all antimicrobial species are known. In this study we have prepared 43 novel N-alkyl monoquaternary ammonium salts including 7 N,N-dialkyl monoquaternary ammonium salts differing bearing alkyl chain either of 12, 14 or 16 carbons. Together with 15 already published QASs we have studied the antimicrobial efficacy of all water-soluble compounds together with standard benzalkonium salts against Gram-positive (G+) and Gram-negative (G-) bacteria, anaerobic spore-forming Cl. difficile, yeasts, filamentous fungi and enveloped Varicella zoster virus (VZV). To address the mechanism of action, lipophilicity seems to be a key parameter which determines antimicrobial efficacy, however, exceptions are likely to occur and therefore QSAR analysis on the efficacy against G+ and G- bacteria was applied. We showed that antibacterial activity is higher when the molecule is larger, more lipophilic, less polar, and contains fewer oxygen atoms, fewer methyl groups bound to heteroatoms or fewer hydrogen atoms bound to polarized carbon atoms. In addition, from an application point of view, we have formulated mixtures, on the basis of obtained efficiency of individual compounds, in order to receive wide-spectrum agent. All formulated mixtures completely eradicated tested G+ and G- strains, including the multidrug-resistant P. aeruginosa as well as in case of yeasts. However, effect on A. fumigatus, Cl. difficile and VZV the exposition towards mixture resulted in significant reduction only. Finally, 3 out of 4 formulated mixtures were safer than reference commercial agent based on benzalkonium salts only in the skin irritation test using reconstructed human epidermidis.
Collapse
|
21
|
Ongwae GM, Morrison KR, Allen RA, Kim S, Im W, Wuest WM, Pires MM. Broadening Activity of Polymyxin by Quaternary Ammonium Grafting. ACS Infect Dis 2020; 6:1427-1435. [PMID: 32212668 DOI: 10.1021/acsinfecdis.0c00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens continue to impose a tremendous health burden across the globe. Here, we describe a novel series of polymyxin-based agents grafted with membrane-active quaternary ammonium warheads to combine two important classes of Gram-negative antimicrobial scaffolds. The goal was to deliver a targeted quaternary ammonium warhead onto the surface of bacterial pathogens using the outer membrane homing properties of polymyxin. The most potent agents resulted in new scaffolds that retained the ability to target Gram-negative bacteria and had limited toxicity toward mammalian cells. We showed, using a molecular dynamics approach, that the new agents retained their ability to engage in specific interactions with lipopolysaccharide molecules. Significantly, the combination of quaternary ammonium and polymyxin widens the activity to the pathogen Staphylococcus aureus. Our results serve as an example of how two membrane-active agents can be combined to produce a class of novel scaffolds with potent biological activity.
Collapse
Affiliation(s)
- George M. Ongwae
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly R. Morrison
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A. Allen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Seonghoon Kim
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
22
|
Alkhalifa S, Jennings MC, Granata D, Klein M, Wuest WM, Minbiole KPC, Carnevale V. Analysis of the Destabilization of Bacterial Membranes by Quaternary Ammonium Compounds: A Combined Experimental and Computational Study. Chembiochem 2020; 21:1510-1516. [PMID: 31859426 PMCID: PMC7237276 DOI: 10.1002/cbic.201900698] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/24/2022]
Abstract
The mechanism of action of quaternary ammonium compound (QAC) antiseptics has long been assumed to be straightforward membrane disruption, although the process of approaching and entering the membrane has little modeling precedent. Furthermore, questions have more recently arisen regarding bacterial resistance mechanisms, and why select classes of QACs (specifically, multicationic QACs) are less prone to resistance. In order to better understand such subtleties, a series of molecular dynamics simulations were utilized to help identify these molecular determinants, directly comparing mono-, bis-, and triscationic QACs in simulated membrane intercalation models. Three distinct membranes were simulated, mimicking the surfaces of Escherichia coli and Staphylococcus aureus, as well as a neutral phospholipid control. By analyzing the resulting trajectories in the form of a timeseries analysis, insight was gleaned regarding the significant steps and interactions involved in the destabilization of phospholipid bilayers within the bacterial membranes. Finally, to more specifically probe the effect of the hydrophobic section of the amphiphile that presumably penetrates the membrane, a series of alkyl- and ester-based biscationic quaternary ammonium compounds were prepared, tested for antimicrobial activity against both Gram-positive and Gram-negative bacteria, and modeled.
Collapse
Affiliation(s)
- Saleh Alkhalifa
- Department of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, PA, 19085, USA
| | - Megan C Jennings
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Daniele Granata
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Michael Klein
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, PA, 19085, USA
| | - Vincenzo Carnevale
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
23
|
Leitgeb AJ, Feliciano JA, Sanchez HA, Allen RA, Morrison KR, Sommers KJ, Carden RG, Wuest WM, Minbiole KPC. Further Investigations into Rigidity-Activity Relationships in BisQAC Amphiphilic Antiseptics. ChemMedChem 2020; 15:667-670. [PMID: 32022457 PMCID: PMC8322965 DOI: 10.1002/cmdc.201900662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Thirty-six biscationic quaternary ammonium compounds were efficiently synthesized in one step to examine the effect of molecular geometry of two-carbon linkers on antimicrobial activity. The synthesized compounds showed strong antimicrobial activity against a panel of both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). While the linker geometry showed only a modest correlation with antimicrobial activity, several of the synthesized bisQACs are promising potential antiseptics due to good antimicrobial activity (MIC≤2 μM) and their higher therapeutic indices compared to previously reported QACs.
Collapse
Affiliation(s)
- Austin J. Leitgeb
- Department of Chemistry, Villanova University, Villanova, PA, 19085 (USA)
| | | | - Hugo A. Sanchez
- Department of Chemistry, Villanova University, Villanova, PA, 19085 (USA)
| | - Ryan A. Allen
- Department of Chemistry, Villanova University, Villanova, PA, 19085 (USA)
| | | | - Kyle J. Sommers
- Department of Chemistry, Emory University, Atlanta, GA, 30322 (USA)
| | - Robert G. Carden
- Department of Chemistry, Villanova University, Villanova, PA, 19085 (USA)
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322 (USA)
| | | |
Collapse
|
24
|
Huigens RW, Abouelhassan Y, Yang H. Phenazine Antibiotic-Inspired Discovery of Bacterial Biofilm-Eradicating Agents. Chembiochem 2019; 20:2885-2902. [PMID: 30811834 PMCID: PMC7325843 DOI: 10.1002/cbic.201900116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Bacterial biofilms are surface-attached communities of slow-growing and non-replicating persister cells that demonstrate high levels of antibiotic tolerance. Biofilms occur in nearly 80 % of infections and present unique challenges to our current arsenal of antibiotic therapies, all of which were initially discovered for their abilities to target rapidly dividing, free-floating planktonic bacteria. Bacterial biofilms are credited as the underlying cause of chronic and recurring bacterial infections. Innovative approaches are required to identify new small molecules that operate through bacterial growth-independent mechanisms to effectively eradicate biofilms. One source of inspiration comes from within the lungs of young cystic fibrosis (CF) patients, who often endure persistent Staphylococcus aureus infections. As these CF patients age, Pseudomonas aeruginosa co-infects the lungs and utilizes phenazine antibiotics to eradicate the established S. aureus infection. Our group has taken a special interest in this microbial competition strategy and we are investigating the potential of phenazine antibiotic-inspired compounds and synthetic analogues thereof to eradicate persistent bacterial biofilms. To discover new biofilm-eradicating agents, we have established an interdisciplinary research program involving synthetic medicinal chemistry, microbiology and molecular biology. From these efforts, we have identified a series of halogenated phenazines (HPs) that potently eradicate bacterial biofilms, and future work aims to translate these preliminary findings into ground-breaking clinical advances for the treatment of persistent biofilm infections.
Collapse
Affiliation(s)
- Robert W. Huigens
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Morrison KR, Allen RA, Minbiole KP, Wuest WM. More QACs, more questions: Recent advances in structure activity relationships and hurdles in understanding resistance mechanisms. Tetrahedron Lett 2019; 60:150935. [PMID: 32296251 PMCID: PMC7158862 DOI: 10.1016/j.tetlet.2019.07.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quaternary ammonium compounds (QACs) are a class of antimicrobials that have been around for over a century; nevertheless, they have found continued renewal in the structures to which they can be appended. Ranging from antimicrobial polymers to adding novel modes of action to existing antibiotics, QACs have found ongoing use due to their potent properties. However, resistance against QACs has begun to emerge, and the mechanism of resistance is still only partially understood. In this review, we aim to summarize the current state of the field and what is known about the mechanisms of resistance so that the QACs of the future can be designed to be evermore efficacious and utilized to unearth the remaining mysteries that surround bacteria's resistance to them.
Collapse
Affiliation(s)
- Kelly R. Morrison
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, United States
| | - Ryan A. Allen
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, United States
| | - Kevin P.C. Minbiole
- Department of Chemistry, Villanova University, 800 E. Lancaster Ave, Villanova, PA 19085, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, United States
- Antibiotic Resistance Center, Emory University School of Medicine 201 Dowman Drive, Atlanta, GA 30322, United States
| |
Collapse
|
26
|
Thomas B, Duval RE, Fontanay S, Varbanov M, Boisbrun M. Synthesis and Antibacterial Evaluation of Bis-thiazolium, Bis-imidazolium, and Bis-triazolium Derivatives. ChemMedChem 2019; 14:1232-1237. [PMID: 31115160 DOI: 10.1002/cmdc.201900151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/27/2019] [Indexed: 12/30/2022]
Abstract
Given the worldwide spread of bacterial drug resistance, there is an urgent need to develop new compounds that exhibit potent antibacterial activity and that are unimpaired by this phenomenon. Quaternary ammonium compounds have been used for many years as disinfectants, but recent advances have shown that polycationic derivatives exhibit much stronger activity and are less prone to bacterial resistance than commonly used monocationic compounds. In this sense, we prepared three series of new bis-cationic compounds: bis-thiazoliums, bis-imidazoliums, and bis-1,2,4-triazoliums. If some compounds of the first series showed fair antibacterial activity, most of those belonging to the two other series were highly potent, with minimum inhibitory concentrations close to 1 μg mL-1 . Some of them also exhibited low toxicity toward eukaryotic MRC-5 lung fibroblasts, and we showed that this toxicity is clearly correlated with clogP. Finally, four selected compounds were found to exhibit a clear bactericidal effect.
Collapse
Affiliation(s)
- Benoît Thomas
- Université de Lorraine, CNRS, L2CM, 54000, Nancy, France.,Laboratoire de Biologie Médicale, Hôpitaux Privés de Metz, Metz, France
| | - Raphaël E Duval
- Université de Lorraine, CNRS, L2CM, 54000, Nancy, France.,ABC Platform, Faculté de Pharmacie, 54000, Nancy, France
| | - Stéphane Fontanay
- Université de Lorraine, CNRS, L2CM, 54000, Nancy, France.,ABC Platform, Faculté de Pharmacie, 54000, Nancy, France
| | | | | |
Collapse
|
27
|
van Hilst QVC, Vasdev RAS, Preston D, Findlay JA, Scottwell SØ, Giles GI, Brooks HJL, Crowley JD. Synthesis, Characterisation and Antimicrobial Studies of some 2,6‐
bis
(1,2,3‐Triazol‐4‐yl)Pyridine Ruthenium(II) “Click” Complexes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Quinn V. C. van Hilst
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Roan A. S. Vasdev
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Dan Preston
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Synøve Ø. Scottwell
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
| | - Gregory I. Giles
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Heather J. L. Brooks
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| |
Collapse
|
28
|
Kontos RC, Schallenhammer SA, Bentley BS, Morrison KR, Feliciano JA, Tasca JA, Kaplan AR, Bezpalko MW, Kassel WS, Wuest WM, Minbiole KPC. An Investigation into Rigidity-Activity Relationships in BisQAC Amphiphilic Antiseptics. ChemMedChem 2018; 14:83-87. [PMID: 30358105 DOI: 10.1002/cmdc.201800622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 12/27/2022]
Abstract
Twenty-one mono- and biscationic quaternary ammonium amphiphiles (monoQACs and bisQACs) were rapidly prepared in order to investigate the effects of rigidity of a diamine core structure on antiseptic activity. As anticipated, the bioactivity against a panel of six bacteria including methicillin-resistant Staphylococcus aureus (MRSA) strains was strong for bisQAC structures, and is clearly correlated with the length of non-polar side chains. Modest advantages were noted for amide-containing side chains, as compared with straight-chained alkyl substituents. Surprisingly, antiseptics with more rigidly disposed side chains, such as those in DABCO-12,12, showed the highest level of antimicrobial activity, with single-digit MIC values or better against the entire bacterial panel, including sub-micromolar activity against an MRSA strain.
Collapse
Affiliation(s)
- Renee C Kontos
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | | | - Brian S Bentley
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Kelly R Morrison
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Javier A Feliciano
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Julia A Tasca
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Anna R Kaplan
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Mark W Bezpalko
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - W Scott Kassel
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
29
|
Schallenhammer SA, Duggan SM, Morrison KR, Bentley BS, Wuest WM, Minbiole KPC. Hybrid BisQACs: Potent Biscationic Quaternary Ammonium Compounds Merging the Structures of Two Commercial Antiseptics. ChemMedChem 2017; 12:1931-1934. [PMID: 29068517 DOI: 10.1002/cmdc.201700597] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/17/2017] [Indexed: 11/11/2022]
Abstract
Benzalkonium chloride (BAC) and cetyl pyridinium chloride (CPC) are two of the most common household antiseptics, but show weaker efficacy against Gram-negative bacteria as well as against methicillin-resistant Staphylococcus aureus (MRSA) strains, relative to other S. aureus strains. We prepared 28 novel quaternary ammonium compounds (QACs) that represent a hybrid of these two structures, using 1- to 2-step synthetic sequences. The biscationic (bisQAC) species prepared show uniformly potent activity against six bacterial strains tested, with nine novel antiseptics displaying single-digit micromolar activity across the board. Effects of unequal chain lengths of two installed side chains had less impact than the overall number of side chain carbon atoms present, which was optimal at 22-25 carbons. This is further indication that simple refinements to multiQAC architectures can show improvement over current household antiseptics.
Collapse
Affiliation(s)
| | | | - Kelly R Morrison
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Brian S Bentley
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | |
Collapse
|
30
|
Abstract
Bicyclo[3.3.1]nonane (BCN) polycations were synthesized by the reaction of the bivalent electrophile thiabicyclo[3.3.1]nonane dinitrate with a series of simple bis(pyridine) nucleophiles. Oligomers of moderate chain length were formed in a modular approach that tolerated the inclusion of functionalized and variable-length linkers between the pyridine units. Post-polymerization modification via copper-catalyzed azide-alkyne cyloaddition was enabled by the inclusion of terminal alkyne groups in these monomers. Most of the resulting polymers, new members of the polyionene class, inhibited the growth of bacteria at the μg/mL level and killed static bacterial cells at polymer concentrations of tens of ng/mL, with moderate to good selectivity with respect to lysis of red blood cells. While resistance to the BCN polymers was developed only very slowly over multiple passages, a degradable version of the polycation was observed to make E. coli cells more susceptible to other quaternary ammonium based antimicrobials. Solid substrates (glass and crystalline silicon) covalently functionalized with a representative BCN polycation were also able to repetitively kill bacteria in solution at high rates and with cleaning by simple sonication between exposures.
Collapse
Affiliation(s)
- Zhishuai Geng
- School of Chemistry & Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - M G Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Ester- and amide-containing multiQACs: Exploring multicationic soft antimicrobial agents. Bioorg Med Chem Lett 2017; 27:2107-2112. [PMID: 28392192 DOI: 10.1016/j.bmcl.2017.03.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/23/2022]
Abstract
Quaternary ammonium compounds (QACs) are ubiquitous antiseptics whose chemical stability is both an aid to prolonged antibacterial activity and a liability to the environment. Soft antimicrobials, such as QACs designed to decompose in relatively short times, show the promise to kill bacteria effectively but not leave a lasting footprint. We have designed and prepared 40 soft QAC compounds based on both ester and amide linkages, in a systematic study of mono-, bis-, and tris-cationic QAC species. Antimicrobial activity, red blood cell lysis, and chemical stability were assessed. Antiseptic activity was strong against a panel of six bacteria including two MRSA strains, with low micromolar activity seen in many compounds; amide analogs showed superior activity over ester analogs, with one bisQAC displaying average MIC activity of ∼1μM. For a small subset of highly bioactive compounds, hydrolysis rates in pure water as well as buffers of pH =4, 7, and 10 were tracked by LCMS, and indicated good stability for amides while rapid hydrolysis was observed for all compounds in acidic conditions.
Collapse
|