1
|
Długosz-Pokorska A, Janecki T, Janecka A, Gach-Janczak K. New uracil analog as inhibitor/modulator of ABC transporters or/and NF-κB in taxol-resistant MCF-7/Tx cell line. J Cancer Res Clin Oncol 2024; 150:328. [PMID: 38914845 PMCID: PMC11196363 DOI: 10.1007/s00432-024-05833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE The global increase in breast cancer cases necessitates ongoing exploration of advanced therapies. Taxol (Tx), an initial breast cancer treatment, induces mitotic arrest but faces limitations due to side effects and the development of resistance. Addressing Tx resistance involves understanding the complex molecular mechanisms, including alterations in tubulin dynamics, NF-κB signaling, and overexpression of ABC transporters (ABCB1 and ABCG2), leading to multidrug resistance (MDR). METHODS Real-time PCR and ELISA kits were used to analyze ABCB1, ABCG2 and NF-κB gene and protein expression levels, respectively. An MDR test assessed the resistance cell phenotype. RESULTS MCF-7/Tx cells exhibited a 24-fold higher resistance to Tx. Real-time PCR and ELISA analysis revealed the upregulation of ABCB1, ABCG2, and NF-κB. U-359 significantly downregulated both ABCB1 and ABCG2 gene and protein levels. Co-incubation with Tx and U-359 further decreased the mRNA and protein expression of these transporters. The MDR test indicated that U-359 increased MDR dye retention, suggesting its potential as an MDR inhibitor. U-359 and Tx, either individually or combined, modulated NF-κBp65 protein levels. CONCLUSION The development of a Taxol-resistant MCF-7 cell line provided valuable insights. U-359 demonstrated effectiveness in reducing the expression of ABC transporters and NF-κB, suggesting a potential solution for overcoming multidrug resistance in breast cancer cells. The study recommends a strategy to enhance the sensitivity of cancer cells to chemotherapy by integrating U-359 with traditional drugs.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Drug Resistance, Neoplasm/drug effects
- NF-kappa B/metabolism
- MCF-7 Cells
- Female
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Drug Resistance, Multiple/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Tomasz Janecki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
2
|
Cheema Y, Linton KJ, Jabeen I. Molecular Modeling Studies to Probe the Binding Hypothesis of Novel Lead Compounds against Multidrug Resistance Protein ABCB1. Biomolecules 2024; 14:114. [PMID: 38254714 PMCID: PMC10813284 DOI: 10.3390/biom14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The expression of drug efflux pump ABCB1/P-glycoprotein (P-gp), a transmembrane protein belonging to the ATP-binding cassette superfamily, is a leading cause of multidrug resistance (MDR). We previously curated a dataset of structurally diverse and selective inhibitors of ABCB1 to develop a pharmacophore model that was used to identify four novel compounds, which we showed to be potent and efficacious inhibitors of ABCB1. Here, we dock the inhibitors into a model structure of the human transporter and use molecular dynamics (MD) simulations to report the conformational dynamics of human ABCB1 induced by the binding of the inhibitors. The binding hypotheses are compared to the wider curated dataset and those previously reported in the literature. Protein-ligand interactions and MD simulations are in good agreement and, combined with LipE profiling, statistical and pharmacokinetic analyses, are indicative of potent and selective inhibition of ABCB1.
Collapse
Affiliation(s)
- Yasmeen Cheema
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science and Technology, Sector H-12, Islamabad 44000, Pakistan;
| | - Kenneth J. Linton
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science and Technology, Sector H-12, Islamabad 44000, Pakistan;
| |
Collapse
|
3
|
Braconi L, Dei S, Contino M, Riganti C, Bartolucci G, Manetti D, Romanelli MN, Perrone MG, Colabufo NA, Guglielmo S, Teodori E. Tetrazole and oxadiazole derivatives as bioisosteres of tariquidar and elacridar: New potent P-gp modulators acting as MDR reversers. Eur J Med Chem 2023; 259:115716. [PMID: 37573829 DOI: 10.1016/j.ejmech.2023.115716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
New 2,5- and 1,5-disubstituted tetrazoles, and 2,5-disubstituted-1,3,4-oxadiazoles were synthesized as tariquidar and elacridar derivatives and studied as multidrug resistance (MDR) reversers. Their behaviour on the three ABC transporters P-gp, MRP1 and BCRP was investigated. All compounds inhibited the P-gp transport activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values even in the low nanomolar range (compounds 15, 22). Oxadiazole derivatives were able to increase the antiproliferative effect of doxorubicin in MDCK-MDR1 and in HT29/DX cells confirming their nature of P-gp modulators, with derivative 15 being the most potent in these assays. Compound 15 also displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP. A computational study suggested a common interaction pattern on P-gp for most of the potent compounds. The bioisosteric substitution of the amide group of lead compounds allowed identifying a new set of potent oxadiazole derivatives that modulate MDR through inhibition of the P-gp efflux activity. If compared to previous amide derivatives, the introduction of the heterocycle rings greatly enhances the activity on P-gp, introduces in two compounds a moderate inhibitory activity on MRP1 and maintains in some cases the effect on BCRP, leading to the unveiling of dual inhibitor 15.
Collapse
Affiliation(s)
- Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| | - Marialessandra Contino
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126, Torino, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Stefano Guglielmo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Torino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Identification and Empiric Evaluation of New Inhibitors of the Multidrug Transporter P-Glycoprotein (ABCB1). Int J Mol Sci 2023; 24:ijms24065298. [PMID: 36982374 PMCID: PMC10049699 DOI: 10.3390/ijms24065298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The expression of the drug efflux pump ABCB1 correlates negatively with cancer survival, making the transporter an attractive target for therapeutic inhibition. In order to identify new inhibitors of ABCB1, we have exploited the cryo-EM structure of the protein to develop a pharmacophore model derived from the best docked conformations of a structurally diverse range of known inhibitors. The pharmacophore model was used to screen the Chembridge compound library. We identified six new potential inhibitors with distinct chemistry compared to the third-generation inhibitor tariquidar and with favourable lipophilic efficiency (LipE) and lipophilicity (CLogP) characteristics, suggesting oral bioavailability. These were evaluated experimentally for efficacy and potency using a fluorescent drug transport assay in live cells. The half-maximal inhibitory concentrations (IC50) of four of the compounds were in the low nanomolar range (1.35 to 26.4 nM). The two most promising compounds were also able to resensitise ABCB1-expressing cells to taxol. This study demonstrates the utility of cryo-electron microscopy structure determination for drug identification and design.
Collapse
|
5
|
Schirizzi A, Contino M, Carrieri L, Riganti C, De Leonardis G, Scavo MP, Perrone MG, Miciaccia M, Kopecka J, Refolo MG, Lotesoriere C, Depalo N, Rizzi F, Giannelli G, Messa C, D'Alessandro R. The multiple combination of Paclitaxel, Ramucirumab and Elacridar reverses the paclitaxel-mediated resistance in gastric cancer cell lines. Front Oncol 2023; 13:1129832. [PMID: 36874116 PMCID: PMC9978398 DOI: 10.3389/fonc.2023.1129832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Paclitaxel (PTX) interferes with microtubule architecture by binding to β-tubulin, thereby blocking progression at the G2/M phase and inducing apoptosis. This study aimed to investigate molecular processes underlying PTX-mediated resistance in gastric cancer (GC) cells. Methods PTX-mediated resistance involves many processes, and in this work some of the factors involved in the resistance mechanism were identified by comparing two GC lines with PTX induced resistance to their sensitive counterparts. Results Thus, the key feature of PTX-resistant cells was the overexpression of pro-angiogenic factors such as VEGFA, VEGFC, and Ang2, known to support tumor cell growth. A second relevant change detected in PTX-resistant lines was the elevated level of TUBβIII, a tubulin isoform that opposes microtubule stabilization. A third identified factor contributing to PTX-resistance was P-glycoprotein (P-gp), a transporter responsible for chemotherapy efflux from the cells, highly expressed in PTX-resistant lines. Discussion These findings were in line with a greater sensitivity of resistant cells to treatment with both Ramucirumab and Elacridar. Ramucirumab significantly reduced the expression of angiogenic molecules and TUBβIII, while Elacridar restored the access of chemotherapy, recovering its anti-mitotic and pro-apoptotic effects. Finally, this study highlighted the role played by exosomes in spreading factors responsible for resistance in the tumor microenvironment.
Collapse
Affiliation(s)
- Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Saverio de Bellis", Castellana Grotte, BA, Italy
| | | | - Livianna Carrieri
- Laboratory of Personalized Medicine, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Castellana Grotte, BA, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Torino, Italy
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Saverio de Bellis", Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Laboratory of Personalized Medicine, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Castellana Grotte, BA, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Turin, Torino, Italy
| | - Maria Grazia Refolo
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Saverio de Bellis", Castellana Grotte, BA, Italy
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Castellana Grotte, BA, Italy
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council Istituto per i Processi Chimico Fisici (IPCF) - Consiglio Nazionale delle Ricerche (CNR) Sede distaccata o Secondaria (SS) Bari, Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council Istituto per i Processi Chimico Fisici (IPCF) - Consiglio Nazionale delle Ricerche (CNR) Sede distaccata o Secondaria (SS) Bari, Bari, Italy.,Department of Chemistry, University of Bari "A. Moro", Bari, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Castellana Grotte, BA, Italy
| | - Caterina Messa
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Saverio de Bellis", Castellana Grotte, BA, Italy
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Saverio de Bellis", Castellana Grotte, BA, Italy
| |
Collapse
|
6
|
Teodori E, Braconi L, Manetti D, Romanelli MN, Dei S. The Tetrahydroisoquinoline Scaffold in ABC Transporter Inhibitors that Act as Multidrug Resistance (MDR) Reversers. Curr Top Med Chem 2022; 22:2535-2569. [PMID: 36284399 DOI: 10.2174/1568026623666221025111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The failure of anticancer chemotherapy is often due to the development of resistance to a variety of anticancer drugs. This phenomenon is called multidrug resistance (MDR) and is related to the overexpression of ABC transporters, such as P-glycoprotein, multidrug resistance- associated protein 1 and breast cancer resistance protein. Over the past few decades, several ABC protein modulators have been discovered and studied as a possible approach to evade MDR and increase the success of anticancer chemotherapy. Nevertheless, the co-administration of pump inhibitors with cytotoxic drugs, which are substrates of the transporters, does not appear to be associated with an improvement in the therapeutic efficacy of antitumor agents. However, more recently discovered MDR reversing agents, such as the two tetrahydroisoquinoline derivatives tariquidar and elacridar, are characterized by high affinity towards the ABC proteins and by reduced negative properties. Consequently, many analogs of these two derivatives have been synthesized, with the aim of optimizing their MDR reversal properties. OBJECTIVE This review aims to describe the MDR modulators carrying the tetraidroisoquinoline scaffold reported in the literature in the period 2009-2021, highlighting the structural characteristics that confer potency and/or selectivity towards the three ABC transport proteins. RESULTS AND CONCLUSION Many compounds have been synthesized in the last twelve years showing interesting properties, both in terms of potency and selectivity. Although clear structure-activity relationships can be drawn only by considering strictly related compounds, some of the compounds reviewed could be promising starting points for the design of new ABC protein inhibitors.
Collapse
Affiliation(s)
- Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
7
|
Braconi L, Teodori E, Riganti C, Coronnello M, Nocentini A, Bartolucci G, Pallecchi M, Contino M, Manetti D, Romanelli MN, Supuran CT, Dei S. New Dual P-Glycoprotein (P-gp) and Human Carbonic Anhydrase XII (hCA XII) Inhibitors as Multidrug Resistance (MDR) Reversers in Cancer Cells. J Med Chem 2022; 65:14655-14672. [PMID: 36269278 DOI: 10.1021/acs.jmedchem.2c01175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a continuing search of dual P-gp and hCA XII inhibitors, we synthesized and studied new N,N-bis(alkanol)amine aryl diester derivatives characterized by the presence of a coumarin group. These hybrids contain both P-gp and hCA XII binding groups to synergistically overcome the P-gp-mediated multidrug resistance (MDR) in cancer cells expressing both P-gp and hCA XII. Indeed, hCA XII modulates the efflux activity of P-gp and the inhibition of hCA XII reduces the intracellular pH, thereby decreasing the ATPase activity of P-gp. All compounds showed inhibitory activities on P-gp and hCA XII proteins taken individually, and many of them displayed a synergistic effect in HT29/DOX and A549/DOX cells that overexpress both P-gp and hCA XII, being more potent than in K562/DOX cells overexpressing only P-gp. Compounds 5 and 14 were identified as promising chemosensitizer agents for selective inhibition in MDR cancer cells overexpressing both P-gp and hCA XII.
Collapse
Affiliation(s)
- Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126Torino, Italy
| | - Marcella Coronnello
- Department of Health Sciences - Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139Firenze, Italy
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Marialessandra Contino
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125Bari, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| |
Collapse
|
8
|
Braconi L, Teodori E, Contino M, Riganti C, Bartolucci G, Manetti D, Romanelli MN, Perrone MG, Colabufo NA, Guglielmo S, Dei S. Overcoming Multidrug Resistance (MDR): Design, Biological Evaluation and Molecular Modelling Studies of 2,4-Substituted Quinazoline Derivatives. ChemMedChem 2022; 17:e202200027. [PMID: 35416421 PMCID: PMC9325490 DOI: 10.1002/cmdc.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Some 2,4-disubstituted quinazolines were synthesized and studied as multidrug resistance (MDR) reversers. The new derivatives carried the quinazoline-4-amine scaffold found in modulators of the ABC transporters involved in MDR, as the TKIs gefitinib and erlotinib. Their behaviour on the three ABC transporters, P-gp, MRP1 and BCRP, was investigated. Almost all compounds inhibited the P-gp activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values in the nanomolar range (1 d, 1 e, 2 a, 2 c, 2 e). Some compounds were active also towards MRP1 and/or BCRP. Docking results obtained by in silico studies on the P-gp crystal structure highlighted common features for the most potent compounds. The P-gp selective compound 1 e was able to increase the doxorubicin uptake in HT29/DX cells and to restore its antineoplastic activity in resistant cancer cells in the same extent of sensitive cells. Compound 2 a displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP.
Collapse
Affiliation(s)
- Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Marialessandra Contino
- Department of Pharmacy – Drug SciencesUniversity of Bari “A. Moro”via Orabona 470125BariItaly
| | - Chiara Riganti
- Department of OncologyUniversity of TurinVia Santena 5/bis10126TorinoItaly
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Maria Grazia Perrone
- Department of Pharmacy – Drug SciencesUniversity of Bari “A. Moro”via Orabona 470125BariItaly
| | - Nicola Antonio Colabufo
- Department of Pharmacy – Drug SciencesUniversity of Bari “A. Moro”via Orabona 470125BariItaly
| | - Stefano Guglielmo
- Department of Drug Science and TechnologyUniversity of TurinVia P. Giuria 910125TorinoItaly
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| |
Collapse
|
9
|
Namasivayam V, Stefan K, Pahnke J, Stefan SM. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer's disease therapeutics. Comput Struct Biotechnol J 2021; 19:6490-6504. [PMID: 34976306 PMCID: PMC8666613 DOI: 10.1016/j.csbj.2021.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine-triphosphate-(ATP)-binding cassette (ABC) transporter ABCA7 is a genetic risk factor for Alzheimer's disease (AD). Defective ABCA7 promotes AD development and/or progression. Unfortunately, ABCA7 belongs to the group of 'under-studied' ABC transporters that cannot be addressed by small-molecules. However, such small-molecules would allow for the exploration of ABCA7 as pharmacological target for the development of new AD diagnostics and therapeutics. Pan-ABC transporter modulators inherit the potential to explore under-studied ABC transporters as novel pharmacological targets by potentially binding to the proposed 'multitarget binding site'. Using the recently reported cryogenic-electron microscopy (cryo-EM) structures of ABCA1 and ABCA4, a homology model of ABCA7 has been generated. A set of novel, diverse, and potent pan-ABC transporter inhibitors has been docked to this ABCA7 homology model for the discovery of the multitarget binding site. Subsequently, application of pharmacophore modelling identified the essential pharmacophore features of these compounds that may support the rational drug design of innovative diagnostics and therapeutics against AD.
Collapse
Key Words
- ABC transporter (ABCA1, ABCA4, ABCA7)
- ABC, ATP-binding cassette
- AD, Alzheimer’s disease
- APP, amyloid precursor protein
- ATP, Adenosine-triphosphate
- Alzheimer’s disease (AD)
- BBB, blood-brain barrier
- BODIPY-cholesterol, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-cholesterol
- ECD, extracellular domain
- EH, extracellular helix
- GSH, reduced glutathione
- HTS, high-throughput screening
- IC, intracellular helix
- MOE, Molecular Operating Environment
- MSD, membrane spanning domain
- Multitarget modulation (PANABC)
- NBD, nucleotide binding domain
- NBD-cholesterol, 7-nitro-2-1,3-benzoxadiazol-4-yl-cholesterol
- PDB, protein data bank
- PET tracer (PETABC)
- PET, positron emission tomography
- PLIF, protein ligand interaction
- PSO, particle swarm optimization
- Polypharmacology
- R-domain/region, regulatory domain/region
- RMSD, root mean square distance
- Rational drug design and development
- SNP, single-nucleotide polymorphism
- TM, transmembrane helix
- cryo-EM, cryogenic-electron microscopy
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
10
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
11
|
Braconi L, Bartolucci G, Contino M, Chiaramonte N, Giampietro R, Manetti D, Perrone MG, Romanelli MN, Colabufo NA, Riganti C, Dei S, Teodori E. 6,7-Dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline amides and corresponding ester isosteres as multidrug resistance reversers. J Enzyme Inhib Med Chem 2020; 35:974-992. [PMID: 32253945 PMCID: PMC7178819 DOI: 10.1080/14756366.2020.1747449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/01/2023] Open
Abstract
Aiming to deepen the structure-activity relationships of the two P-glycoprotein (P-gp) modulators elacridar and tariquidar, a new series of amide and ester derivatives carrying a 6,7-dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline scaffold linked to different methoxy-substituted aryl moieties were synthesised. The obtained compounds were evaluated for their P-gp interaction profile and selectivity towards the two other ABC transporters, multidrug-resistance-associated protein-1 and breast cancer resistance protein, showing to be very active and selective versus P-gp. Two amide derivatives, displaying the best P-gp activity, were tested in co-administration with the antineoplastic drug doxorubicin in different cancer cell lines, showing a significant sensitising activity towards doxorubicin. The investigation on the chemical stability of the derivatives towards spontaneous or enzymatic hydrolysis, showed that amides are stable in both models while some ester compounds were hydrolysed in human plasma. This study allowed us to identify two chemosensitizers that behave as non-transported substrates and are characterised by different selectivity profiles.
Collapse
Affiliation(s)
- Laura Braconi
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | | | - Niccolò Chiaramonte
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Roberta Giampietro
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Bari, Italy
| | - Dina Manetti
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | | | - Maria Novella Romanelli
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | | | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Silvia Dei
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Elisabetta Teodori
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem 2020; 204:112609. [DOI: 10.1016/j.ejmech.2020.112609] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
13
|
Dei S, Braconi L, Romanelli MN, Teodori E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:710-743. [PMID: 35582565 PMCID: PMC8992508 DOI: 10.20517/cdr.2019.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of chemotherapy treatment of cancer. This phenomenon is often associated with the overexpression of the ATP-binding cassette (ABC) transporters P-gp (P-glycoprotein, ABCB1), multidrug resistance-associated protein 1, ABCC1 and breast cancer resistance protein, ABCG2 (BCRP). These transporters are constitutively expressed in many tissues playing relevant protective roles by the regulation of the permeability of biological membranes, but they are also overexpressed in malignant tissues. P-gp is the first efflux transporter discovered to be involved in cancer drug resistance, and over the years, inhibitors of this pump have been disclosed to administer them in combination with chemotherapeutic agents. Three generations of inhibitors of P-gp have been examined in preclinical and clinical studies; however, these trials have largely failed to demonstrate that coadministration of pump inhibitors elicits an improvement in therapeutic efficacy of antitumor agents, although some of the latest compounds show better results. Therefore, new and innovative strategies, such as the fallback to natural products and the discover of dual activity ligands emerged as new perspectives. BCRP is the most recently ABC protein identified to be involved in multidrug resistance. It is overexpressed in several haematological and solid tumours together with P-gp, threatening the therapeutic effectiveness of different chemotherapeutic drugs. The chemistry of recently described BCRP inhibitors and dual P-gp/BCRP inhibitors, as well as their preliminary pharmacological evaluation are discussed, and the most recent advances concerning these kinds of MDR modulators are reviewed.
Collapse
Affiliation(s)
- Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
14
|
Falsini M, Catarzi D, Varano F, Ceni C, Dal Ben D, Marucci G, Buccioni M, Volpini R, Di Cesare Mannelli L, Lucarini E, Ghelardini C, Bartolucci G, Menicatti M, Colotta V. Antioxidant-Conjugated 1,2,4-Triazolo[4,3- a]pyrazin-3-one Derivatives: Highly Potent and Selective Human A 2A Adenosine Receptor Antagonists Possessing Protective Efficacy in Neuropathic Pain. J Med Chem 2019; 62:8511-8531. [PMID: 31453698 DOI: 10.1021/acs.jmedchem.9b00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New 8-amino-6-aryl-1,2,4-triazolo[4,3-a]pyrazin-3-ones were designed to obtain dual antioxidant-human A2A adenosine receptor (hA2A AR) antagonists. Two sets of compounds were synthesized, the first featuring phenol rings at the 6-position, the second bearing the lipoyl and 4-hydroxy-3,5-di-tertbut-benzoyl residues appended by different linkers on the 6-phenyl ring. Several new triazolopyrazines (1-21) were potent and selective hA2A AR antagonists (Ki = 0.17-54.5 nM). Compounds 11, 15, and 21, featuring antioxidant moieties, and compound 12, lacking the antioxidant functionality, reduced oxaliplatin-induced toxicity in microglia cells, the most active being the lipoyl-derivative 15 and the (4-hydroxy-3,5-di-tert-butyl)benzoyl-analogue 21 which were effective in reducing the oxygen free radical level. The lipoyl-derivative 15 was also able to revert oxaliplatin-induced neuropathy in the mouse. In vivo efficacy of 15 makes it a promising neuroprotective agent in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Costanza Ceni
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università degli Studi di Camerino , Via S. Agostino 1 , 62032 Camerino , Macerata , Italy
| | - Gabriella Marucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università degli Studi di Camerino , Via S. Agostino 1 , 62032 Camerino , Macerata , Italy
| | - Michela Buccioni
- Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università degli Studi di Camerino , Via S. Agostino 1 , 62032 Camerino , Macerata , Italy
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università degli Studi di Camerino , Via S. Agostino 1 , 62032 Camerino , Macerata , Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini 6 , 50139 Firenze , Italy
| | - Elena Lucarini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini 6 , 50139 Firenze , Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini 6 , 50139 Firenze , Italy
| | - Gianluca Bartolucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Marta Menicatti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| |
Collapse
|
15
|
Dei S, Braconi L, Trezza A, Menicatti M, Contino M, Coronnello M, Chiaramonte N, Manetti D, Perrone MG, Romanelli MN, Udomtanakunchai C, Colabufo NA, Bartolucci G, Spiga O, Salerno M, Teodori E. Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug resistance (MDR) modulators. Eur J Med Chem 2019; 172:71-94. [DOI: 10.1016/j.ejmech.2019.03.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022]
|
16
|
Silbermann K, Shah CP, Sahu NU, Juvale K, Stefan SM, Kharkar PS, Wiese M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur J Med Chem 2019; 164:193-213. [PMID: 30594677 DOI: 10.1016/j.ejmech.2018.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023]
Abstract
During cancer chemotherapy, certain cancers may become cross-resistant to structurally diverse antineoplastic agents. This so-called multidrug resistance (MDR) is highly associated with the overexpression of ATP-binding cassette (ABC) transport proteins. These membrane-bound efflux pumps export a broad range of structurally diverse endo- and xenobiotics, including chemically unrelated anticancer agents. This translocation of drugs from the inside to the outside of cancer cells is mediated at the expense of ATP. In the last 40 years, three ABC transporters - ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) - have mainly been attributed to the occurrence of MDR in cancer cells. One of the strategies to overcome MDR is to inhibit the efflux transporter function by small-molecule inhibitors. In this work, we investigated new chalcone- and flavone-based compounds for selective as well as broad-spectrum inhibition of the stated transport proteins. These include substituted chalcones with variations at rings A and B, and flavones with acetamido linker at position 3. The synthesized molecules were evaluated for their inhibitory potential against ABCB1, ABCC1, and ABCG2 in calcein AM and pheophorbide A assays. In further investigations with the most promising candidates from each class, we proved that ABCB1- and ABCG2-mediated MDR could be reversed by the compounds. Moreover, their intrinsic toxicity was found to be negligible in most cases. Altogether, our findings contribute to the understanding of ABC transport proteins and reveal new compounds for ongoing evaluation in the field of ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Chetan P Shah
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Niteshkumar U Sahu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
17
|
Rullo M, Niso M, Pisani L, Carrieri A, Colabufo NA, Cellamare S, Altomare CD. 1,2,3,4-Tetrahydroisoquinoline/2H-chromen-2-one conjugates as nanomolar P-glycoprotein inhibitors: Molecular determinants for affinity and selectivity over multidrug resistance associated protein 1. Eur J Med Chem 2018; 161:433-444. [PMID: 30384046 DOI: 10.1016/j.ejmech.2018.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022]
Abstract
A series of coniugates bearing a 1,2,3,4-tetrahydroisoquinoline motif linked to substituted 7-hydroxy-2H-chromen-2-ones was synthesized and assayed through calcein-AM test in Madin-Darby Canine Kidney (MDCK) cells overexpressing P-glycoprotein (P-gp) and closely related multidrug resistance associated protein 1 (MRP1) to probe the interference with efflux mechanisms mediated by P-gp and MRP1, respectively. A number of substituents at C3 and C4 of coumarin nucleus along with differently sized and shaped spacers was enrolled to investigate the effects of focused structural modifications over affinity and selectivity. Linker length and flexibility played a key role in enhancing P-gp affinity as proved by the most potent P-gp modulator (3h, IC50 = 70 nM). A phenyl ring within the spacer (3k, 3l, 3o) and bulkier groups (Br in 3r, Ph in 3u) at coumarin C3 led to derivatives showing nanomolar activity (160 nM < IC50 < 280 nM) along with outstanding selectivity over MRP1 (SI > 350). Molecular docking calculations carried out on a human MDR1 homology model structure contributed to gain insights into the ligands' binding modes. Some compounds (3d, 3h, 3l, 3r, 3t, 3u) reversed MDR thereby restoring doxorubicin cytotoxicity when co-administered with the drug into MDCK-MDR1 cells.
Collapse
Affiliation(s)
- Mariagrazia Rullo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
| | - Antonio Carrieri
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
18
|
The Effects of Synthetically Modified Natural Compounds on ABC Transporters. Pharmaceutics 2018; 10:pharmaceutics10030127. [PMID: 30096910 PMCID: PMC6161255 DOI: 10.3390/pharmaceutics10030127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is a major hurdle which must be overcome to effectively treat cancer. ATP-binding cassette transporters (ABC transporters) play pivotal roles in drug absorption and disposition, and overexpression of ABC transporters has been shown to attenuate cellular/tissue drug accumulation and thus increase MDR across a variety of cancers. Overcoming MDR is one desired approach to improving the survival rate of patients. To date, a number of modulators have been identified which block the function and/or decrease the expression of ABC transporters, thereby restoring the efficacy of a range of anticancer drugs. However, clinical MDR reversal agents have thus far proven ineffective and/or toxic. The need for new, effective, well-tolerated and nontoxic compounds has led to the development of natural compounds and their derivatives to ameliorate MDR. This review evaluates whether synthetically modifying natural compounds is a viable strategy to generate potent, nontoxic, ABC transporter inhibitors which may potentially reverse MDR.
Collapse
|
19
|
Jayaram V, Sridhar T, Sharma GVM, Berrée F, Carboni B. Synthesis of Polysubstituted Isoquinolines and Related Fused Pyridines from Alkenyl Boronic Esters via a Copper-Catalyzed Azidation/Aza-Wittig Condensation Sequence. J Org Chem 2018; 83:843-853. [DOI: 10.1021/acs.joc.7b02831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vankudoth Jayaram
- Organic
and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500 007, India
| | - Tailor Sridhar
- Organic
and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500 007, India
| | - Gangavaram V. M. Sharma
- Organic
and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500 007, India
| | - Fabienne Berrée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Bertrand Carboni
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| |
Collapse
|